In the present paper a complete procedure for solving Multiple Objective Integer Linear Programming Problems is presented. The algorithm can be regarded as a corrected form and an alternative to the method that was proposed by Gupta and Malhotra. A numerical illustration is given to show that this latter can miss some efficient solutions. Whereas, the algorithm stated bellow determines all efficient solutions without missing any one.
@article{RO_2002__36_4_351_0,
author = {Abbas, Moncef and Chaabane, Djamal},
title = {An algorithm for solving multiple objective integer linear programming problem},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {351--364},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {4},
doi = {10.1051/ro:2003006},
mrnumber = {1997929},
zbl = {1037.90050},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro:2003006/}
}
TY - JOUR AU - Abbas, Moncef AU - Chaabane, Djamal TI - An algorithm for solving multiple objective integer linear programming problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2002 SP - 351 EP - 364 VL - 36 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro:2003006/ DO - 10.1051/ro:2003006 LA - en ID - RO_2002__36_4_351_0 ER -
%0 Journal Article %A Abbas, Moncef %A Chaabane, Djamal %T An algorithm for solving multiple objective integer linear programming problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 2002 %P 351-364 %V 36 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro:2003006/ %R 10.1051/ro:2003006 %G en %F RO_2002__36_4_351_0
Abbas, Moncef; Chaabane, Djamal. An algorithm for solving multiple objective integer linear programming problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 4, pp. 351-364. doi: 10.1051/ro:2003006
[1] and, Solving Multiple Objective Integer Linear Programming Problem. Ricerca Operativa 29 (1999) 15-39.
[2] and, Determination of the Efficient Set in Multi-Objective Linear Programming. J. Optim. Theory Appl. 70 (1991) 467-489. | Zbl | MR
[3] , Finding all maximal efficient faces in multi-Objective linear programming. Math. Programming 61 (1993) 357-375. | Zbl | MR
[4] and, Non linear Programming theory and Algorithms. J. Wiley, New York (1979). | Zbl | MR
[5] , Finding an initial Efficient Extreme Point for a Linear Multiple Objective Program. J. Oper. Res. Soc. (1981) 495-498. | Zbl | MR
[6] , Existence of Efficient solutions for vector Maximization Problems. J. Optim. Theory Appl. 26 (1978) 569-580. | Zbl | MR
[7] , Linear Multiple Objective Programs with zero-one variables. Math. Programming 13 (1977) 121-139. | Zbl | MR
[8] and, Finding Efficient Points for Multi-Objective Linear Programs. Math. Programming 8 (1975) 375-377. | MR
[9] and, Finding All Efficient Extreme Points for Multi-Objective Linear Programs. Math. Programming 14 (1978) 249-261. | Zbl | MR
[10] and, Multi-Criteria Integer Linear Programming Problem. Cahiers Centre Études Rech. Opér. 34 (1992) 51-68. | Zbl | MR
[11] , Integer Programming, Theory, Applications and Computations. Academic Press (1975). | Zbl | MR
[12] , The Enumeration of the set of all Efficient solutions for a Linear Multiple Objective Program. Oper. Res. Quarterly 28/3 (1977) 711-725. | Zbl
[13] and, An Algorithm for the Multiple Objective Integer Linear Programming Problem. Eur. J. Oper. Res. 9 (1982) 378-385. | Zbl | MR
[14] , Algorithms for the Vector Maximization Problem. Math. Programming 2 (1972) 207-229. | Zbl | MR
[15] , Problems and methods with Multiple Objective functions. Math. Programming 2 (1972) 207-229. | Zbl | MR
[16] , Multiple Criteria Optimization theory, Computation and Applications. Wiley, New York (1985). | Zbl | MR
[17] and, A Survey of Techniques for Finding Efficient Solutions. Asia-Pacific J. Oper. Res. 3 (1986) 95-108. | Zbl
[18] and, Multi-Objective Combinatorial Optimization Problem: A Survey. J. Multi-Criteria Decision Anal. 3 (1994) 83-104. | Zbl
[19] , Constrained Integer Linear Fractional Programming Problem. Optimization 21 (1990) 749-757. | Zbl | MR
[20] , Multiple Criteria Decision Making. Plenum, New York (1985). | Zbl | MR
[21] and, The set of all non-dominated solutions in linear cases and Multi-criteria simplex method. J. Math. Anal. Appl. 49 (1975) 430-468. | Zbl | MR
[22] , Integer Programming with Multiple Objectives. Ann. Discrete Math. 1 (1977) 551-562. | Zbl
Cité par Sources :





