An algorithm for solving multiple objective integer linear programming problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 4, pp. 351-364.

In the present paper a complete procedure for solving Multiple Objective Integer Linear Programming Problems is presented. The algorithm can be regarded as a corrected form and an alternative to the method that was proposed by Gupta and Malhotra. A numerical illustration is given to show that this latter can miss some efficient solutions. Whereas, the algorithm stated bellow determines all efficient solutions without missing any one.

DOI : https://doi.org/10.1051/ro:2003006
Mots clés : multiple objective programming, integer linear programming
@article{RO_2002__36_4_351_0,
     author = {Abbas, Moncef and Chaabane, Djamal},
     title = {An algorithm for solving multiple objective integer linear programming problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {351--364},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {4},
     year = {2002},
     doi = {10.1051/ro:2003006},
     zbl = {1037.90050},
     mrnumber = {1997929},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro:2003006/}
}
Abbas, Moncef; Chaabane, Djamal. An algorithm for solving multiple objective integer linear programming problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 4, pp. 351-364. doi : 10.1051/ro:2003006. http://www.numdam.org/articles/10.1051/ro:2003006/

[1] M. Abbas and M. Moulaï, Solving Multiple Objective Integer Linear Programming Problem. Ricerca Operativa 29 (1999) 15-39.

[2] P. Armand and C. Malivert, Determination of the Efficient Set in Multi-Objective Linear Programming. J. Optim. Theory Appl. 70 (1991) 467-489. | MR 1124774 | Zbl 0793.90064

[3] P. Armand, Finding all maximal efficient faces in multi-Objective linear programming. Math. Programming 61 (1993) 357-375. | MR 1242467 | Zbl 0795.90054

[4] M.S. Bazaraa and C.M. Shetty, Non linear Programming theory and Algorithms. J. Wiley, New York (1979). | MR 533477 | Zbl 0476.90035

[5] H.P. Benson, Finding an initial Efficient Extreme Point for a Linear Multiple Objective Program. J. Oper. Res. Soc. (1981) 495-498. | MR 614693 | Zbl 0454.90075

[6] H.P. Benson, Existence of Efficient solutions for vector Maximization Problems. J. Optim. Theory Appl. 26 (1978) 569-580. | MR 526653 | Zbl 0373.90085

[7] G.R. Bitran, Linear Multiple Objective Programs with zero-one variables. Math. Programming 13 (1977) 121-139. | MR 484391 | Zbl 0377.90070

[8] J.G. Ecker and I.A. Kouada, Finding Efficient Points for Multi-Objective Linear Programs. Math. Programming 8 (1975) 375-377. | MR 371391

[9] J.G. Ecker and I.A. Kouada, Finding All Efficient Extreme Points for Multi-Objective Linear Programs. Math. Programming 14 (1978) 249-261. | MR 469256 | Zbl 0385.90105

[10] R. Gupta and R. Malhotra, Multi-Criteria Integer Linear Programming Problem. Cahiers Centre Études Rech. Opér. 34 (1992) 51-68. | MR 1199194 | Zbl 0774.90070

[11] A.T. Hamdy, Integer Programming, Theory, Applications and Computations. Academic Press (1975). | MR 416577 | Zbl 0316.90042

[12] H. Isermann, The Enumeration of the set of all Efficient solutions for a Linear Multiple Objective Program. Oper. Res. Quarterly 28/3 (1977) 711-725. | Zbl 0372.90086

[13] D. Klein and E. Hannan, An Algorithm for the Multiple Objective Integer Linear Programming Problem. Eur. J. Oper. Res. 9 (1982) 378-385. | MR 655095 | Zbl 0477.90075

[14] J. Philip, Algorithms for the Vector Maximization Problem. Math. Programming 2 (1972) 207-229. | MR 302205 | Zbl 0288.90052

[15] B. Roy, Problems and methods with Multiple Objective functions. Math. Programming 2 (1972) 207-229. | MR 1552721 | Zbl 0254.90061

[16] R.E. Steuer, Multiple Criteria Optimization theory, Computation and Applications. Wiley, New York (1985). | MR 836977 | Zbl 0663.90085

[17] J. Teghem and P.L. Kunsh, A Survey of Techniques for Finding Efficient Solutions. Asia-Pacific J. Oper. Res. 3 (1986) 95-108. | Zbl 0616.90045

[18] E.L. Ulungu and J. Teghem, Multi-Objective Combinatorial Optimization Problem: A Survey. J. Multi-Criteria Decision Anal. 3 (1994) 83-104. | Zbl 0853.90098

[19] V. Verma, Constrained Integer Linear Fractional Programming Problem. Optimization 21 (1990) 749-757. | MR 1072476 | Zbl 0717.90073

[20] P.L. Yu, Multiple Criteria Decision Making. Plenum, New York (1985). | MR 812059 | Zbl 0643.90045

[21] M. Zeleny and P.L. Yu, The set of all non-dominated solutions in linear cases and Multi-criteria simplex method. J. Math. Anal. Appl. 49 (1975) 430-468. | MR 421660 | Zbl 0313.65047

[22] S. Zionts, Integer Programming with Multiple Objectives. Ann. Discrete Math. 1 (1977) 551-562. | Zbl 0363.90082