Let denote the outer automorphism group of the free group with . We prove that for any finite index subgroup , the group is isomorphic to the normalizer of in . We prove that is co-Hopfian: every injective homomorphism is surjective. Finally, we prove that the abstract commensurator is isomorphic to .
@article{PMIHES_2007__105__1_0,
author = {Farb, Benson and Handel, Michael},
title = {Commensurations of {Out}$(F_n)$},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {1--48},
year = {2007},
publisher = {Springer},
volume = {105},
doi = {10.1007/s10240-007-0007-7},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-007-0007-7/}
}
TY - JOUR AU - Farb, Benson AU - Handel, Michael TI - Commensurations of Out$(F_n)$ JO - Publications Mathématiques de l'IHÉS PY - 2007 SP - 1 EP - 48 VL - 105 PB - Springer UR - https://www.numdam.org/articles/10.1007/s10240-007-0007-7/ DO - 10.1007/s10240-007-0007-7 LA - en ID - PMIHES_2007__105__1_0 ER -
Farb, Benson; Handel, Michael. Commensurations of Out$(F_n)$. Publications Mathématiques de l'IHÉS, Tome 105 (2007), pp. 1-48. doi: 10.1007/s10240-007-0007-7
1. , , , The Tits alternative for Out(Fn ), I: Dynamics of exponentially-growing automorphisms, Ann. Math. (2), 151 (2000), 517-623 | Zbl | MR
2. , , , The Tits alternative for Out(Fn ) II: A Kolchin type theorem, Ann. Math. (2), 161 (2005), 1-59 | MR
3. , , , Solvable subgroups of Out(Fn ) are virtually Abelian, Geom. Dedicata, 104 (2004), 71-96 | Zbl | MR
4. , , Train tracks and automorphisms of free groups, Ann. Math. (2), 135 (1992), 1-51 | Zbl | MR
5. , , Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci., Math. Sci., 107 (1997), 223-235 | Zbl | MR
6. , , Automorphisms of automorphism groups of free groups, J. Algebra, 229 (2000), 785-792 | Zbl | MR
7. , , The automorphism group of a free group is complete, J. Lond. Math. Soc., II. Ser., 11 (1975), 181-190 | Zbl | MR
8. M. Feighn and M. Handel, Abelian subgroups of Out(Fn ), preprint, December 2006.
9. , , The automorphism group of a free group is not linear, J. Algebra, 149 (1992), 494-499 | Zbl | MR
10. , , On injective homomorphisms between Teichmüller modular groups, I, Invent. Math., 135 (1999), 425-486 | Zbl | MR
11. , Mapping class groups, Handbook of Geometric Topology, North Holland, Amsterdam (2002), pp. 523-633 | Zbl | MR
12. , Automorphisms of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not., 1997 (1997), 651-666 | Zbl | MR
13. , Completeness of groups of outer automorphisms of free groups, Group-Theoretic Investigations (Russian), Akad. Nauk SSSR Ural. Otdel., Sverdlovsk (1990), pp. 128-143 | Zbl | MR
14. , Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin (1990) | Zbl | MR
15. , Discrete subgroups isomorphic to lattices in semisimple Lie groups, Am. J. Math., 98 (1976), 241-261 | Zbl | MR
16. , Automorphisms of free groups and outer space, Geom. Dedicata, 94 (2002), 1-31 | Zbl | MR
17. , Ergodic Theory and Semisimple Groups, Birkhäuser, Basel (1984) | Zbl | MR
Cité par Sources :






