Let denote the outer automorphism group of the free group with . We prove that for any finite index subgroup , the group is isomorphic to the normalizer of in . We prove that is co-Hopfian: every injective homomorphism is surjective. Finally, we prove that the abstract commensurator is isomorphic to .
@article{PMIHES_2007__105__1_0, author = {Farb, Benson and Handel, Michael}, title = {Commensurations of {Out}$(F_n)$}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--48}, publisher = {Springer}, volume = {105}, year = {2007}, doi = {10.1007/s10240-007-0007-7}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-007-0007-7/} }
TY - JOUR AU - Farb, Benson AU - Handel, Michael TI - Commensurations of Out$(F_n)$ JO - Publications Mathématiques de l'IHÉS PY - 2007 SP - 1 EP - 48 VL - 105 PB - Springer UR - http://www.numdam.org/articles/10.1007/s10240-007-0007-7/ DO - 10.1007/s10240-007-0007-7 LA - en ID - PMIHES_2007__105__1_0 ER -
Farb, Benson; Handel, Michael. Commensurations of Out$(F_n)$. Publications Mathématiques de l'IHÉS, Volume 105 (2007), pp. 1-48. doi : 10.1007/s10240-007-0007-7. http://www.numdam.org/articles/10.1007/s10240-007-0007-7/
1. The Tits alternative for Out(Fn ), I: Dynamics of exponentially-growing automorphisms, Ann. Math. (2), 151 (2000), 517-623 | MR | Zbl
, , ,2. The Tits alternative for Out(Fn ) II: A Kolchin type theorem, Ann. Math. (2), 161 (2005), 1-59 | MR
, , ,3. Solvable subgroups of Out(Fn ) are virtually Abelian, Geom. Dedicata, 104 (2004), 71-96 | MR | Zbl
, , ,4. Train tracks and automorphisms of free groups, Ann. Math. (2), 135 (1992), 1-51 | MR | Zbl
, ,5. Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci., Math. Sci., 107 (1997), 223-235 | MR | Zbl
, ,6. Automorphisms of automorphism groups of free groups, J. Algebra, 229 (2000), 785-792 | MR | Zbl
, ,7. The automorphism group of a free group is complete, J. Lond. Math. Soc., II. Ser., 11 (1975), 181-190 | MR | Zbl
, ,8. M. Feighn and M. Handel, Abelian subgroups of Out(Fn ), preprint, December 2006.
9. The automorphism group of a free group is not linear, J. Algebra, 149 (1992), 494-499 | MR | Zbl
, ,10. On injective homomorphisms between Teichmüller modular groups, I, Invent. Math., 135 (1999), 425-486 | MR | Zbl
, ,11. Mapping class groups, Handbook of Geometric Topology, North Holland, Amsterdam (2002), pp. 523-633 | MR | Zbl
,12. Automorphisms of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not., 1997 (1997), 651-666 | MR | Zbl
,13. Completeness of groups of outer automorphisms of free groups, Group-Theoretic Investigations (Russian), Akad. Nauk SSSR Ural. Otdel., Sverdlovsk (1990), pp. 128-143 | MR | Zbl
,14. Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin (1990) | MR | Zbl
,15. Discrete subgroups isomorphic to lattices in semisimple Lie groups, Am. J. Math., 98 (1976), 241-261 | MR | Zbl
,16. Automorphisms of free groups and outer space, Geom. Dedicata, 94 (2002), 1-31 | MR | Zbl
,17. Ergodic Theory and Semisimple Groups, Birkhäuser, Basel (1984) | MR | Zbl
,Cited by Sources: