We consider a fully practical finite element approximation of the following degenerate system
Keywords: Stefan problem, Joule heating, degenerate system, finite elements, convergence
@article{M2AN_2004__38_4_633_0,
author = {Barrett, John W. and N\"urnberg, Robert},
title = {Finite element approximation of a {Stefan} problem with degenerate {Joule} heating},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {633--652},
year = {2004},
publisher = {EDP Sciences},
volume = {38},
number = {4},
doi = {10.1051/m2an:2004030},
mrnumber = {2087727},
zbl = {1072.80010},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2004030/}
}
TY - JOUR AU - Barrett, John W. AU - Nürnberg, Robert TI - Finite element approximation of a Stefan problem with degenerate Joule heating JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 633 EP - 652 VL - 38 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004030/ DO - 10.1051/m2an:2004030 LA - en ID - M2AN_2004__38_4_633_0 ER -
%0 Journal Article %A Barrett, John W. %A Nürnberg, Robert %T Finite element approximation of a Stefan problem with degenerate Joule heating %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 633-652 %V 38 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004030/ %R 10.1051/m2an:2004030 %G en %F M2AN_2004__38_4_633_0
Barrett, John W.; Nürnberg, Robert. Finite element approximation of a Stefan problem with degenerate Joule heating. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 633-652. doi: 10.1051/m2an:2004030
[1] and, A finite element method on a fixed mesh for the Stefan problem with convection in a saturated porous medium, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines Eds., Academic Press (London) (1982) 389-409. | Zbl
[2] and, Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323-363. | Zbl
[3] , On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem. IMA J. Numer. Anal. 1 (1981) 115-125. | Zbl
[4] , Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. | Zbl
[5] and, A finite element model for the time-dependent Joule heating problem. Math. Comp. 64 (1995) 1433-1453. | Zbl
[6] , and, Existence of generalized weak solutions to a model for in situ vitrification. European J. Appl. Math. 9 (1998) 543-559. | Zbl
[7] and, Modeling of the in situ vitrification process. Amer. Ceram. Soc. Bull. 70 (1991) 832-835.
[8] , Compact sets in the space . Ann. Math. Pura. Appl. 146 (1987) 65-96. | Zbl
[9] , A compactness theorem and its application to a system of partial differential equations. Differential Integral Equations 9 (1996) 119-136. | Zbl
[10] , Existence for a model arising from the in situ vitrification process. J. Math. Anal. Appl. 271 (2002) 333-342. | Zbl
Cité par Sources :





