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FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM
WITH DEGENERATE JOULE HEATING ∗

John W. Barrett1 and Robert Nürnberg1

Abstract. We consider a fully practical finite element approximation of the following degenerate
system

∂

∂t
ρ(u) −∇.( α(u)∇u) � σ(u) |∇φ|2, ∇.( σ(u)∇φ) = 0

subject to an initial condition on the temperature, u, and boundary conditions on both u and the
electric potential, φ. In the above ρ(u) is the enthalpy incorporating the latent heat of melting,
α(u) > 0 is the temperature dependent heat conductivity, and σ(u) ≥ 0 is the electrical conductivity.
The latter is zero in the frozen zone, u ≤ 0, which gives rise to the degeneracy in this Stefan system.
In addition to showing stability bounds, we prove (subsequence) convergence of our finite element
approximation in two and three space dimensions. The latter is non-trivial due to the degeneracy in
σ(u) and the quadratic nature of the Joule heating term forcing the Stefan problem. Finally, some
numerical experiments are presented in two space dimensions.
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1. Introduction

In situ vitrification (ISV) is a thermal treatment process that converts contaminated soil back into a durable
leach resistant product. In [7], this process is described as follows. Electrodes are inserted into the soil to the
desired treatment depth and a layer of electrically conductive material (a “starter path”) is placed between the
electrodes. Electric power supplied to the electrodes causes the conductive material to melt, thus melting the
surrounding soil. Electrical energy is transferred to the molten soil through Joule (resistance) heating, and the
soil continues to melt to the desired depth, at which time the power to the electrodes is discontinued. After
completion of the melt, the molten soil cools and solidifies. The product resulting from this ISV process is a
glass and crystalline mass, resembling natural obsidian. Hence the contaminated materials in the original soil
are now trapped in this resulting solid, which is leach resistant.

A simplified mathematical model of the steady state problem is considered in [6]. In this paper, we consider
the corresponding time dependent model studied in [10].
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Let Ω ⊂ R
d, d = 2 or 3, be the spatial domain of interest, the region of soil, with boundary ∂Ω. For simplicity

in describing the finite element partitioning, we make the following assumption on Ω throughout:
(A1) Ω is polygonal, if d = 2; and polyhedral, if d = 3.

However, for ease of exposition in this paper, we consider the specific situation in the figure below, i.e. Ω takes
the form of a rectangle minus two rectangular electrodes if d = 2; and a cuboid minus two cuboidal electrodes
if d = 3.
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On noting the figure above, where Γ± represents the boundary of the ±ive electrode, we define

Γφ
D := Γ+ ∪ Γ−, Γφ

N := ∂Ω \ Γφ
D, Γu

D := Γ1 ∪ Γ2 ∪ Γ3, Γu
N := ∂Ω \ Γu

D.

These correspond to parts of the boundary, where we will prescribe Dirichlet and Neumann conditions, respec-
tively, for the electric potential φ and the temperature u.

Then [10] proposes the following nonlinear degenerate parabolic system as a simplified model of the ISV
process:
(P) Find functions u, v, φ : Ω× [0, T ]→ R such that v ∈ ρ(u) for a.e. (x, t) ∈ ΩT and

∂v

∂t
−∇.(α(u)∇u) = σ(u) |∇φ|2 in ΩT , (1.1a)

u = uD on Γu
D × (0, T ], α(u)

∂u

∂ν
= −γ (u− uN ) on Γu

N × (0, T ] , (1.1b)

v(·, 0) = v0(·) in Ω, (1.1c)

∇.(σ(u)∇φ) = 0 in ΩT , (1.1d)

φ = φ on Γφ
D × (0, T ], σ(u)

∂φ

∂ν
= 0 on Γφ

N × (0, T ]; (1.1e)

where T > 0 is a fixed positive time, ΩT := Ω× (0, T ] and ν is the outward unit normal to ∂Ω. In (1.1a–e) uD

and uN , γ represent the Γu
D trace and Γu

N traces, respectively, of given functions

uD, uN , γ ∈W 1,r(Ω) ⊂ C(Ω), r > d; with γ |Γu
N
≥ 0; (1.2a)

and φ represents the Γφ
D trace of a given function φ ∈ C([0, T ];W 1,∞(ΩT )) satisfying

mφ ≤ φm(t) ≤ φ(x, t) ≤ φM (t) ≤Mφ for a.e. (x, t) ∈ ΩT , (1.2b)

where mφ, Mφ ∈ R. Here φ is allowed to be time dependent in order to model the turning on and off of the
power supply to the electrodes. Note that uD and uN , on the other hand, are time independent, because we
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assume that (i) the subsurface boundary Γu
D is sufficiently far away from the electrodes to be effected by the

electric current and remains solid throughout; and (ii) the electrodes and the top surface (air) have known time
independent temperature uN but heat exchange into the medium is allowed via (1.1b).

Furthermore, the enthalpy or heat content, v, is defined in terms of the temperature and the given parameters:
latent heat, λ ∈ R≥0 := {s ∈ R : s ≥ 0}, and heat capacities, ρ± ∈ R>0 := {s ∈ R : s > 0}; by

ρ(s) :=


ρ+ s+ λ if s > 0,
[0, λ] if s = 0,
ρ− s if s < 0.

(1.3)

Here we have assumed, without loss of generality on rescaling, that zero is the phase change temperature. For
later use, we introduce the monotone function ψ : R→ R, and its antiderivative Ψ, defined for all s ∈ R by

ψ(s) := ρ−1(s) and Ψ(s) :=
∫ s

0

ψ(q) dq =⇒ C1 s
2 − C2 ≤ Ψ(s) ≤ C3 s

2; (1.4)

where Ci(λ, ρ±) ∈ R>0. Finally, α ∈ C0,1(R) is the given temperature dependent heat conductivity with

0 < mα ≤ α(s) ≤Mα ∀ s ∈ R; (1.5)

and σ ∈ C0,1(R) is the given temperature dependent electrical conductivity satisfying

σ(s) = 0, for s ≤ 0; 0 ≤ σ(s) ≤Mσ, for s > 0;
∫ 1

0

[σ(s)]−
1
2 ds =∞. (1.6)

As a possible example, let σ(s), for s ≥ 0, be given by

σ(s) =

{
σ0 s

p
0 if s ≥ s0,

σ0 s
p if s ∈ [0, s0],

where p ≥ 2 and s0, σ0 ∈ R>0. (1.7)

(P) models the combined process of heat conduction and electrical conduction in a body, which may undergo
a phase change as a result of heat generated by the current. The rate of energy generation associated with
electrical current flow, the so called Joule heating, is represented by the term σ(u) |∇φ|2 on the right hand side
of (1.1a).

The fact that σ(u) vanishes in the frozen zone, {u ≤ 0}, gives rise to the degeneracy in this Stefan system.
Existence of a solution to (P) is non-trivial due to this degeneracy of σ(u) and the quadratic nature of the
Joule term forcing the Stefan problem. Existence of a weak solution to the steady state version of (P) can be
found in [6], and to (P) in [10]. It is the goal of this paper to adapt the techniques in [10], in order to prove
(subsequence) convergence of a fully practical finite element approximation of (P). In particular, the integral
condition on σ in (1.6) plays a key role; see Lemma 3.4 below. Furthermore, for the analysis in [10] it is crucial
to rewrite the right hand side term of the weak formulation of (1.1a), on noting (1.1d), as∫

ΩT

σ(u) |∇φ|2 η dxdt =
∫

ΩT

σ(u)∇φ [ η∇φ+∇(η (φ− φ) )− (φ − φ)∇η] dxdt

=
∫

ΩT

σ(u)∇φ [ η∇φ− (φ− φ)∇η] dxdt ∀ η ∈ L2(0, T ;H1(Ω)) . (1.8)

Given that a priori one can only show that σ(u) |∇φ|2 ∈ L∞(0, T ;L1(Ω)), one would need an (unavail-
able) L∞(ΩT ) bound on u, in order to establish the desired L2(0, T ;H1(Ω)) bound on u directly from using the
first integral in (1.8) with η = u− uD. However an L∞(ΩT ) bound is available, via a weak maximum principle,
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on φ. Hence the identity (1.8) does now yield the desired L2(0, T ;H1(Ω)) bound on u. To transfer the described
strategy to the discrete level is rather delicate. In order to do so we have to modify the natural finite element
approximation of (1.1a) and introduce matrices D(·); see (2.14) below. Finally, we note that our convergence
analysis is restricted to subsequences due to the lack of a uniqueness proof for the weak solution to (P).

Although there is considerable numerical analysis on the non-degenerate system; see e.g. [5], where error
bounds for a fully discrete finite element approximation of (P) with λ = 0, ρ± = 1, α(·) ≡ 1 and σ(·) ≥ cm > 0
are derived; we know of no numerical analysis on the degenerate system (P). In addition, we believe that the
techniques used here on this model problem will be applicable to similar degenerate systems. Finally, we note
that a related Stefan system modelling the artificial freezing of water-saturated soil is studied numerically in
[1]. There the Joule heating effect in (1.1a) is replaced by a convection term v .∇u, where the velocity field v
of the groundwater is coupled to the pressure φ through Darcy’s law, v = σ(u)∇φ, and φ satisfies (1.1b) with
the permeability σ(·) vanishing in the frozen region.

This paper is organized as follows. In Section 2 we formulate a fully practical finite element approximation of
the degenerate system (P). In Section 3 we prove (subsequence) convergence in two and three space dimensions.
Finally, in Section 4 we present some numerical experiments in two space dimensions.

Notation and auxiliary results

Let D ⊂ R
d, d = 1, 2 or 3, with a Lipschitz boundary ∂D if d = 2 or 3. We adopt the standard notation for

Sobolev spaces, denoting the norm of Wm,q(D) (m ∈ N, q ∈ [1,∞]) by ‖ ·‖m,q,D and the semi-norm by | · |m,q,D.
We extend these norms and semi-norms in the natural way to the corresponding spaces of vector and matrix
valued functions. For q = 2, Wm,2(D) will be denoted by Hm(D) with the associated norm and semi-norm
written as, respectively, ‖ · ‖m,D and | · |m,D. For notational convenience, we drop the domain subscript on the
above norms and semi-norms in the case D ≡ Ω. Throughout (·, ·) denotes the standard L2 inner product over
Ω. In addition we define

∫
−η :=

1
m(Ω)

(η, 1) ∀ η ∈ L1(Ω) and
∫

κ
− η :=

1
m(κ)

∫
κ

η dx ∀ η ∈ L1(κ) , (1.9)

where m(D) denotes the measure of D.
We recall the following compactness result. Let X , Y and Z be Banach spaces with a compact embedding

X ↪→ Y and a continuous embedding Y ↪→ Z. Then any bounded and closed subset E of L2(0, T ;X) with

lim
θ→0

{
sup
η∈E
‖η(·, ·+ θ)− η(·, ·)‖L2(0,T−θ;Z)

}
= 0 (1.10)

is compact in L2(0, T ;Y ), see [8]. In addition, we note the following Egoroff type result (see [10], Theorem C).
If {zk}k≥0 is bounded in Lq(0, T ;W 1,q(Ω)) and precompact in Lq(ΩT ), then for each s ∈ [1, q) there exists a
subsequence {zkj}j≥0 and a function z ∈ Lq(0, T ;W 1,q(Ω)) such that for all ε > 0 there corresponds a function
ϑε ∈ Ls(0, T ;W 1,s(Ω)) such that

zkj → z uniformly on {ϑε > 0} as j →∞, (1.11a)

0 ≤ ϑε(x, t) ≤ 1 for a.e.(x, t) ∈ ΩT and ‖1− ϑε‖sLs(ΩT ) + ‖∇ϑε‖sLs(ΩT ) ≤ ε. (1.11b)

Throughout C denotes a generic constant independent of h, τ and δ; the mesh and temporal discretization
parameters and the regularization parameter. In addition C(a1, · · ·, aI) denotes a constant depending on the
arguments {ai}Ii=1. Furthermore ·(�) denotes an expression with or without the superscript �. Finally, we define
for any s ∈ R

[s]+ := max{s, 0}. (1.12)
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2. Finite element approximation

We consider the finite element approximation of (P) under the following assumptions on the mesh:
(A2) Let Ω be given as in (A1). Let {T h}h>0 be a regular family of partitionings of Ω into disjoint open

simplices κ with hκ := diam(κ) and h := maxκ∈T h hκ, so that Ω = ∪κ∈T hκ. In addition, it is assumed
that T h is a (weakly) acute partitioning; that is for (a) d = 2, for any pair of adjacent triangles the
sum of opposite angles relative to the common side does not exceed π; (b) d = 3, the angle between any
faces of the same tetrahedron does not exceed π

2 .

Associated with T h is the finite element space

Sh :=
{
χ ∈ C(Ω) : χ |κ is linear ∀ κ ∈ T h

}
⊂ H1(Ω). (2.1)

Let J be the set of nodes of T h and {pj}j∈J the coordinates of these nodes. Let {χj}j∈J be the standard
basis functions for Sh; that is χj ∈ Sh and χj(pi) = δij for all i, j ∈ J . We introduce πh : C(Ω) → Sh, the
interpolation operator, such that (πhη)(pj) = η(pj) for all j ∈ J . A discrete semi-inner product on C(Ω) is then
defined by

(η1, η2)h :=
∫

Ω

πh[η1(x) η2(x)] dx =
∑
j∈J

mj η1(pj) η2(pj), where mj := (1, χj) > 0. (2.2)

The induced discrete semi-norm is then |η|h := [ (η, η)h ]
1
2 , where η ∈ C(Ω).

We note that the (weak) acuteness assumption yields that∫
κ

∇χi .∇χj dx ≤ 0 i 
= j, ∀ κ ∈ T h. (2.3)

Let f ∈ C0,1(R) be monotone with Lipschitz constant Lf , then it follows from (2.3) and the inequality

(f(a)− f(b))2 ≤ Lf (f(a)− f(b)) (a− b) ∀ a, b ∈ R

that for all χ ∈ Sh ∫
κ

|∇πh[f(χ)]|2 dx ≤ Lf

∫
κ

∇χ .∇πh[f(χ)] dx ∀ κ ∈ T h. (2.4)

Furthermore, it is easily established (see e.g. [4], p. 69) that for all κ ∈ T h and for all χ ∈ Sh

|(I − πh)[f(χ)]|0,∞,κ ≤ hκ |∇(πh[f(χ)])|0,∞,κ and |f(χ)−
∫

κ
− πh[f(χ)]|0,∞,κ ≤ hκ |∇(πh[f(χ)])|0,∞,κ. (2.5)

Next we introduce

H1
φ(t)(Ω) :=

{
η ∈ H1(Ω) : η(·) = φ(·, t) on Γφ

D

}
, H1

φ,0(Ω) :=
{
η ∈ H1(Ω) : η = 0 on Γφ

D

}
; (2.6a)

H1
u(Ω) :=

{
η ∈ H1(Ω) : η = uD on Γu

D

}
, H1

u,0(Ω) :=
{
η ∈ H1(Ω) : η = 0 on Γu

D

}
· (2.6b)

In addition to T h, let 0 = t0 < t1 < . . . < tN−1 < tN = T be a partitioning of [0, T ] into possibly variable time
steps τn := tn − tn−1, n = 1→ N . We set τ := maxn=1→N τn. On noting (2.6a,b) and (2.1), we then introduce

Sh,n
φ :=

{
χ ∈ Sh : χ = πhφ

n
on Γφ

D

}
, Sh

φ,0 :=
{
χ ∈ Sh : χ = 0 on Γφ

D

}
⊂ H1

φ,0(Ω); (2.7a)

Sh
u :=

{
χ ∈ Sh : χ = πhuD on Γu

D

}
, Sh

u,0 :=
{
χ ∈ Sh : χ = 0 on Γu

D

}
⊂ H1

u,0(Ω); (2.7b)
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where φ
n
(·) := φ(·, tn). Furthermore, given a regularization parameter δ ∈ R>0, we introduce, on recalling (1.6),

(1.9) and (1.5), the discrete (regularized) functions σh
δ , α

h : Sh → L∞(Ω) such that for all κ ∈ T h and χ ∈ Sh

σh
δ (χ) |κ := δ +

∫
κ
− πh[σ(χ)] and αh(χ) |κ :=

∫
κ
− πh[α(χ)] . (2.8)

In order to formulate our finite element approximation we introduce the following matrices D(·). Let {ei}di=1

be the orthonormal vectors in R
d, such that the jth component of ei is δij , i, j = 1→ d. Let κ̂ be the standard

reference simplex in R
d with vertices {p̂i}di=0, where p̂0 is the origin and p̂i = ei, i = 1 → d. Given a κ ∈ T h

with vertices {pi}di=0 there exists a matrix Bκ such that the mapping Fκ : x̂ ∈ R
d → bκ + Bκx̂ ∈ R

d maps the
vertex p̂i to pi, i = 0→ d, and hence κ̂ to κ. For all κ ∈ T h and η ∈ C(κ), we set

η̂(x̂) ≡ η(Fκx̂) and (π̂hη̂)(x̂) ≡
(
πhη

)
(Fκx̂) ∀ x̂ ∈ κ̂. (2.9)

We have for any zh ∈ Sh and κ ∈ T h that

∇zh ≡ B−T
κ ∇̂ẑh, (2.10)

where x ≡ (x1, · · ·, xd)T , ∇ ≡ ( ∂
∂x1

, · · ·, ∂
∂xd

)T , x̂ ≡ (x̂1, · · ·, x̂d)T and ∇̂ ≡ ( ∂
∂x̂1

, · · ·, ∂
∂x̂d

)T . From (2.9)
and (2.10), it follows for all κ ∈ T h, ηj ∈ C(κ) and i = 1→ d that

∂

∂x̂i
(π̂h[η̂1 η̂2]) = η̂1(p̂i) η̂2(p̂i)− η̂1(p̂i−1) η̂2(p̂i−1)

= (η̂1(p̂i−1) + η̂1(p̂i)) [η̂2(p̂i)− η̂2(p̂i−1)] + (η̂2(p̂i−1) + η̂2(p̂i)) [η̂1(p̂i)− η̂1(p̂i−1)]. (2.11)

Therefore (2.11) yields for all κ ∈ T h and ηj ∈ C(κ) that

∇̂
(
π̂h[η̂1 η̂2]

)
= D̂

(
π̂hη̂1

)
∇̂
(
π̂hη̂2

)
+ D̂

(
π̂hη̂2

)
∇̂
(
π̂hη̂1

)
; (2.12)

where for any zh ∈ Sh and κ ∈ T h, D̂(ẑh) is the d× d diagonal matrix with diagonal entries[
D̂
(
ẑh
)]

ii
:=

1
2
[
ẑh (p̂i−1) + ẑh(p̂i)

]
i = 1→ d. (2.13)

On combining (2.9), (2.10) and (2.12), we have for all ηj ∈ C(Ω) that

∇
(
πh[η1 η2]

)
= D

(
πhη1

)
∇
(
πhη2

)
+D

(
πhη2

)
∇
(
πhη1

)
; (2.14)

where for any zh ∈ Sh,

D(zh) |κ:= B−T
κ D̂

(
ẑh
)
BT

κ ∀ κ ∈ T h. (2.15)

It follows from (2.15) and (2.13) that for all zh ∈ Sh and for all κ ∈ T h

∥∥D(zh) |κ
∥∥2 ≤ C

∥∥∥D̂(ẑh) |κ̂
∥∥∥2

≤ C max
i=0→d

∣∣ẑh(p̂i)
∣∣2 = C max

i=0→d

∣∣zh(pi)
∣∣2 ≤ C ∫

κ− π
h
[
(zh)2

]
, (2.16)

where ‖ · ‖ is the spectral norm on d × d matrices. Similarly to the above, it follows from (2.15), (2.13) and
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(2.10) that for all zh ∈ Sh and κ ∈ T h that

|D(zh)− zh I|0,∞,κ ≤ C |D̂(ẑh)− ẑh I|0,∞,κ̂ ≤ C |∇̂ẑh|0,∞,κ̂ ≤ C hκ |∇zh|0,∞,κ, (2.17)

where I is the d× d identity matrix.
For any given regularization parameter δ ∈ R>0, we then consider the following fully practical finite element

approximation of (P):
(Ph,τ

δ ) For n ≥ 1 find {Φn
δ , U

n
δ , V

n
δ } ∈ S

h,n
φ × Sh

u × Sh such that V n
δ ∈ πh[ρ(Un

δ )] and(
σh

δ

(
Un−1

δ

)
∇Φn

δ ,∇χ
)

= 0 ∀ χ ∈ Sh
φ,0, (2.18a)(

V n
δ − V n−1

δ

τn
, χ

)h

+
(
αh(Un−1

δ )∇Un
δ ,∇χ

)
+
∫

Γu
N

πh [γ (Un
δ − uN ) χ] ds

= (σh
δ

(
Un−1

δ )∇Φn
δ , D(χ)∇Φn

δ

)
∀ χ ∈ Sh

u,0; (2.18b)

where V 0
δ ∈ Sh is an approximation to v0 and U0

δ = πh[ψ(V 0
δ )] on recalling (1.4).

Remark 2.1. (Ph,τ
δ ) decouples the updates of the electric potential and the temperature at each time level

and is a straightforward finite element approximation of (P), except that χ I has been replaced by D(χ) on the
right hand side of (2.18b). This choice, which is a simple modification of the standard approximation, enables
the discrete analogue of (1.8) to hold; see the proof of Theorem 2.3 below, and in particular the bound (2.29).
Although we are not able to establish the bounds in Theorem 2.3 for the standard approximation, in all our
practical computations the two approximations lead to numerical results that are graphically indistinguishable,
see Section 4.

Below we recall some well-known results concerning Sh:

lim
h→0
‖(I − πh)η‖1,q = 0 ∀ η ∈W 1,q(Ω) , q ∈ (d,∞] ; (2.19)∫

Ω

χ2 dx ≤ |χ|2h ≡
∫

Ω

πh[χ2] dx ≤ (d+ 2)
∫

Ω

χ2 dx ∀ χ ∈ Sh ; (2.20)∫
Γu

N

χ2 ds ≤
∫

Γu
N

πh[χ2] ds ≤ (d+ 1)
∫

Γu
N

χ2 ds ≤ C |χ|21 ∀ χ ∈ Sh
u,0 ; (2.21)

|(χ, zh)− (χ, zh)h| ≤ |(I − πh)(χ zh)|0,1 ≤ C h1+m |χ|m |zh|1 ∀ zh, χ ∈ Sh, m = 0 or 1; (2.22)

|(I − πh)(χ zh)|0,1,Γu
N
≤ C h ‖χ‖1 ‖zh‖1 ∀ zh, χ ∈ Sh. (2.23)

Lemma 2.2. Let the assumptions (A2) hold and Un−1
δ ∈ Sh

u , V n−1
δ ∈ πh[ρ(Un−1

δ )]. Then for all δ ∈ (0, 1) and
for all h, τn > 0 there exists a unique solution {Φn

δ , U
n
δ , V

n
δ } to the n-th step of (Ph,τ

δ ) such that(
σh

δ

(
Un−1

δ

)
∇Φn

δ ,∇Φn
δ

)
≤
(
σh

δ

(
Un−1

δ

)
∇
[
πhφ

n
]
,∇

[
πhφ

n
] )
≤ C, (2.24a)

mφ ≤ φ
n

m ≤ Φn
δ (x) ≤ φn

M ≤Mφ ∀ x ∈ Ω; where φ
n

m := φm(tn) and φ
n

M := φM (tn). (2.24b)

Proof. Given Un−1
δ ∈ Sh

u , it follows immediately from (2.7a) and (2.8) that there exists a unique solution
Φn

δ ∈ S
h,n
φ to (2.18a). Existence and uniqueness of a solution {Un

δ , V
n
δ } ∈ Sh

u × Sh to (2.18b) follows on noting
that ρ is a maximal monotone operator, see e.g. [3].

The bound (2.24a) follows immediately from choosing χ ≡ Φn
δ − πhφ

n ∈ Sh
φ,0 in (2.18a), applying a

Cauchy-Schwartz inequality and noting (2.19) and (1.2b). Choosing χ ≡ πh[Φn
δ − φ

n

M ]+ ∈ Sh
φ,0 in (2.18a),
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on recalling (1.12) and noting (2.4), yields that

∫
Ω

σh
δ

(
Un−1

δ

) ∣∣∣∣∇πh
[
Φn

δ − φ
n

M

]
+

∣∣∣∣2 ≤ 0. (2.25)

Combining (2.25) and the fact that πh[Φn
δ − φ

n

M ]+ ∈ Sh
φ,0 yields that πh[Φn

δ − φ
n

M ]+ ≡ 0 and hence the second
inequality in (2.24b). Similarly, choosing χ ≡ πh[φ

n

m − Φn
δ ]+ ∈ Sh

φ,0 in (2.18a) yields the first inequality
in (2.24b). �

Throughout this paper, we will assume that the initial data satisfies as h→ 0

Sh
u � U0

δ = πh
[
ψ
(
V 0

δ

)]
→ u0 := ψ(v0) strongly in H1(Ω), V 0

δ → v0 strongly in L2(Ω). (2.26)

For example if v0 ∈ L∞(Ω) and u0 ∈ H1
u(Ω)∩W 1,r(Ω) ⊂ C(Ω), r > d, with u0 = 0 on a finite number of curves

(surfaces) if d = 2 (d = 3); then on setting U0
δ = πhu0 and V 0

δ (pj) ∈ ρ(U0
δ (pj)) for all j ∈ J , the first result

in (2.26) follows immediately from (2.19) and the second is easily established.

Theorem 2.3. Let the assumptions (A2) hold and U0
δ ∈ Sh

u , V 0
δ ∈ πh[ρ(U0

δ )] satisfy (2.26). Then for all
δ ∈ (0, 1), h > 0 and for all time partitions {τn}Nn=1 with τn ≤ C τn−1, n = 2 → N , the unique solution
{Φn

δ , U
n
δ , V

n
δ }Nn=1 to (Ph,τ

δ ) is such that

max
n=1→N

|V n
δ |2h + max

n=1→N
|Un

δ |2h +
N∑

n=1

τn |Un
δ |21 +

N∑
n=1

τn

∫
Γu

N

πh[γ (Un
δ )2] ds+

N∑
n=1

|Un
δ − Un−1

δ |2h ≤ C(T ). (2.27)

Proof. Choosing χ ≡ Un
δ − πhuD ∈ Sh

u,0 in (2.18b) yields that

(
V n

δ − V n−1
δ , Un

δ − uD

)h
+ τn

(
αh(Un−1

δ )∇Un
δ ,∇

[
Un

δ − πhuD

])
+ τn

∫
Γu

N

πh [γ (Un
δ − uN ) (Un

δ − uD)] ds = τn
(
σh

δ (Un−1
δ )∇Φn

δ , D(Un
δ − πhuD)∇Φn

δ

)
. (2.28)

We now apply the discrete analogue of (1.8). On noting (2.14), (2.18a), the fact that Φn
δ − πhφ

n ∈ Sh
φ,0,

(2.24a,b), (2.16), (2.20), (2.19), (1.2b) and a Poincaré inequality; it follows for all χ ∈ Sh
u,0 that

∣∣(σh
δ

(
Un−1

δ

)
∇Φn

δ , D (χ) ∇Φn
δ

)∣∣ =
∣∣∣(σh

δ

(
Un−1

δ

)
∇Φn

δ , D (χ) ∇πhφ
n −D

(
Φn

δ − πhφ
n
)
∇χ

)∣∣∣
≤ C

[
|D(χ)|0

∣∣∣πhφ
n
∣∣∣
1,∞

+
∣∣∣D (

Φn
δ − πhφ

n
)∣∣∣

0,∞
|χ|1

]
≤ C |χ|1. (2.29)

Combining (2.28), (2.29), (2.19) and (1.2a) yields that

(
V n

δ − V n−1
δ , Un

δ − uD

)h
+

1
2
τn
(
αh

(
Un−1

δ

)
∇Un

δ ,∇Un
δ

)
+

1
2
τn

∫
Γu

N

πh
[
γ (Un

δ − uN )2
]

ds

≤ C τn

[
1 +

∣∣πhuD

∣∣2
1

+
∫

Γu
N

πh
[
γ (uD − uN )2

]
ds

]
≤ C τn. (2.30)
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It follows from the convexity of Ψ, recall (1.4), that

k∑
n=1

(
V n

δ − V n−1
δ , Un

δ − uD

)h
=

k∑
n=1

(
V n

δ − V n−1
δ , ψ (V n

δ )− uD

)h ≥ k∑
n=1

(
Ψ (V n

δ )−Ψ
(
V n−1

δ

)
, 1
)h

+
(
V 0

δ − V k
δ , uD

)h
=
[(

Ψ
(
V k

δ

)
, 1
)h − (V k

δ , uD

)h]− [(Ψ (
V 0

δ

)
, 1
)h − (V 0

δ , uD

)h
]

k = 1→ N.

(2.31)

Combining (2.30) and (2.31), and noting (1.2a), (1.4), (2.20) and (2.26), yields that

[(
Ψ
(
V k

δ

)
, 1
)h − (V k

δ , uD

)h
]

+
1
2

k∑
n=1

τn
(
αh(Un−1

δ )∇Un
δ ,∇Un

δ

)
+

1
2

k∑
n=1

τn

∫
Γu

N

πh
[
γ (Un

δ )2
]

ds

≤ C(T )
[
1 +

(
Ψ
(
V 0

δ

)
, 1
)h − (V 0

δ , uD

)h] ≤ C(T )
[
1 +

∣∣V 0
δ

∣∣2
h

]
≤ C(T ) k = 1→ N. (2.32)

The first four bounds in (2.27) then follow from (2.32) on noting (1.5), (1.2a) and (1.4).
Choosing χ ≡ Un

δ − Un−1
δ ∈ Sh

u,0 in (2.18b), noting the monotonicity of ρ, (1.2a), (2.21), (2.29), our time
step constraint, bounds 2 and 3 in (2.27) and (2.26), yields that

N∑
n=1

∣∣Un
δ − Un−1

δ

∣∣2
h
≤

N∑
n=1

(
V n

δ − V n−1
δ , Un

δ − Un−1
δ

)h ≤ C N∑
n=1

τn (an + 1)
∣∣Un

δ − Un−1
δ

∣∣
1

≤ C(T )

1 +

(
N∑

n=1

τn a
2
n

) 1
2
( N∑

n=1

τn
∣∣Un

δ − Un−1
δ

∣∣2
1

) 1
2

≤ C(T ); (2.33)

where

an :=

(
|Un

δ |21 +
∫

Γu
N

πh
[
γ (Un

δ )2
]

ds

) 1
2

. (2.34)

Hence the final bound in (2.27) follows immediately from (2.33). �

3. Convergence

Let

Uδ(t) :=
t− tn−1

τn
Un

δ +
tn − t
τn

Un−1
δ t ∈ [tn−1, tn] n ≥ 1, (3.1a)

U+
δ (t) := Un

δ , U−
δ (t) := Un−1

δ t ∈ (tn−1, tn] n ≥ 1. (3.1b)

We note for future reference that

Uδ − U±
δ = (t− t±n )

∂Uδ

∂t
t ∈ (tn−1, tn) n ≥ 1, (3.2)

where t+n := tn and t−n := tn−1. We introduce also

τ̄ (t) := τn t ∈ (tn−1, tn] n ≥ 1. (3.3)

Using the above notation, and introducing analogous notation for Vδ and Φδ, (Ph,τ
δ ) can be restated as: find

{Φ+
δ , Uδ, Vδ} ∈ L∞(0, T ;Sh) × C([0, T ];Sh

u) × C([0, T ];Sh) such that Φ+
δ (·, tn) ∈ Sh,n

φ , n = 1 → N , V ±
δ ∈
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πh[ρ(U±
δ )] and∫ T

0

(σh
δ (U−

δ )∇Φ+
δ ,∇χ) dt = 0 ∀ χ ∈ L2(0, T ;Sh

φ,0), (3.4a)∫ T

0

[(
∂Vδ

∂t
, χ

)h

+ (αh(U−
δ )∇U+

δ ,∇χ) +
∫

Γu
N

πh[γ (U+
δ − uN )χ] ds

]
dt

=
∫ T

0

(σh
δ (U−

δ )∇Φ+
δ , D(χ)∇Φ+

δ ) dt ∀ χ ∈ L2(0, T ;Sh
u,0). (3.4b)

Lemma 3.1. Let the assumptions of Theorem 2.3 hold such that τ , δ → 0 as h → 0. Then there exists a
subsequence of {Φ+

δ , Uδ, Vδ}h, where {Φ+
δ , Uδ, Vδ} solve (Ph,τ

δ ), and functions

φ ∈ L∞(ΩT ), u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
u(Ω)), v ∈ L∞(0, T ;L2(Ω)) (3.5)

and g ∈ L2(ΩT ) such that v ∈ ρ(u) for a.e. (x, t) ∈ ΩT and as h→ 0

Φ+
δ → φ weak-∗ in L∞(ΩT ), (3.6a)

[σh
δ (U−

δ )]
1
2 ∇Φ+

δ → g weakly in L2(ΩT ), (3.6b)

Uδ, U
±
δ → u weak-∗ in L∞(0, T ;L2(Ω)), (3.6c)

Uδ, U
±
δ → u weakly in L2(0, T ;H1(Ω)), (3.6d)

Uδ, U
±
δ → u weakly in L2(0, T ;L2(∂Ω)), (3.6e)

Vδ → v weak-∗ in L∞(0, T ;L2(Ω)). (3.6f)

If in addition τn = τ , n = 1→ N(h), then as h→ 0

Uδ, U
±
δ → u strongly in L2(0, T ;Lq(Ω)), q ∈ [1, s) , (3.7a)

σh
δ (U−

δ )→ σ(u) strongly in L2(0, T ;Lq(Ω)), q ∈ [1, s) , (3.7b)

[σh
δ (U−

δ )]
1
2 → [σ(u)]

1
2 strongly in L2(0, T ;Lq(Ω)), q ∈ [1, s) , (3.7c)

αh(U−
δ )→ α(u) strongly in L2(0, T ;Lq(Ω)), q ∈ [1, s) ; (3.7d)

where s =∞ if d = 2 and s = 6 if d = 3.

Proof. Noting the definitions (3.1a,b), (3.3), the bounds (2.24a,b) and (2.27) imply that

∥∥Φ+
δ

∥∥2

L∞(ΩT )
+
∥∥∥ [σh

δ (U−
δ )]

1
2 ∇Φ+

δ

∥∥∥2

L2(ΩT )
+
∥∥∥V (±)

δ

∥∥∥2

L∞(0,T ;L2(Ω))

+
∥∥∥U (±)

δ

∥∥∥2

L∞(0,T ;L2(Ω))
+
∥∥∥U (±)

δ

∥∥∥2

L2(0,T ;H1(Ω))
+
∥∥∥∥τ̄ 1

2
∂Uδ

∂t

∥∥∥∥2

L2(ΩT )

≤ C(T ). (3.8)

Furthermore, we deduce from (3.2) and (3.8) that

∥∥Uδ − U±
δ

∥∥2

L2(ΩT )
≤
∥∥∥∥τ̄ ∂Uδ

∂t

∥∥∥∥2

L2(ΩT )

≤ C(T ) τ. (3.9)

Hence on noting (3.8), (3.9), (2.19) and (1.2a) we can choose a subsequence {Φ+
δ , Uδ, Vδ}h such that the con-

vergence results (3.5) and (3.6a–f) hold.
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In the next part of the proof we will establish the strong convergence results (3.7a,b). It follows from (2.18b)
for m = 0→ N − �, � ∈ {1, . . . , N} fixed, that

m+
∑
n=m+1

τn

(
V n

δ − V n−1
δ

τn
, Um+


δ − Um
δ

)h

= −
m+
∑

n=m+1

τn

[
(αh(Un−1

δ )∇Un
δ ,∇[Um+


δ − Um
δ ])

+
∫

Γu
N

πh[γ (Un
δ − uN ) (Um+


δ − Um
δ )] ds− (σh

δ (Un−1
δ )Φn

δ , D(Um+

δ − Um

δ )∇Φn
δ , )

]
. (3.10)

Similarly to (2.33), we obtain from (3.10), on noting the monotonicity of ρ, (1.2a), (2.21), (2.29) and (2.34),
that

|Um+

δ − Um

δ |2h ≤ (V m+

δ − V m

δ , Um+

δ − Um

δ )h ≤ C
m+
∑

n=m+1

τn (an + 1) |Um+

δ − Um

δ |1

= C

∑

k=1

τm+k (am+k + 1) |Um+

δ − Um

δ |1 . (3.11)

Summing (3.11) for m = 0→ N − � yields, on noting the uniform time step assumption, (2.27) and (2.26), that

N−
∑
m=0

τ |Um+

δ − Um

δ |2h ≤ C

∑

k=1

τ

N−
∑
m=0

τ am+k |Um+

δ − Um

δ |1

≤ C

∑

k=1

τ

[
N−
∑
m=0

τ a2
m+k

] 1
2
[

N−
∑
m=0

τ |Um+

δ − Um

δ |21

] 1
2

≤ C(T ) � τ. (3.12)

Combining (3.12), (2.2), (2.20) and (3.1b) yields that∫ T−θ

0

|U±
δ (t+ θ)− U±

δ (t)|20 dt ≤ C(T ) θ ; (3.13)

for θ = � τ . It is a simple matter to generalise (3.13) to arbitrary θ ∈ (0, T ) with θ = µ τ , µ ∈ (0, N); see e.g. [2],
Lemma 3.2. This yields (3.13) for all θ ∈ (0, T ). It follows from this and (3.6d), on noting (1.10), that (3.7a)
holds.

Furthermore, we have from (1.6) that for q ∈ [2, s)

‖σh
δ (U−

δ )− σ(u)‖L2(0,T ;Lq(Ω)) ≤ ‖σh
δ (U−

δ )− σ(U−
δ )‖L2(0,T ;Lq(Ω)) + C ‖U−

δ − u‖L2(0,T ;Lq(Ω)). (3.14)

It follows from (2.8), (2.5), an inverse inequality and (2.4) that for all κ ∈ T h and t ∈ (0, T )

‖σh
δ (U−

δ )− σ(U−
δ )‖q0,q,κ ≤ C

[
δ + hq

κ |∇(πh[σ(U−
δ )])|q0,q,κ

]
≤ C

[
δ + h2

κ |πh[σ(U−
δ )]|q−2

0,∞,κ |∇(πh[σ(U−
δ )])|20,κ

]
≤ C

[
δ + h2

κ |∇U−
δ |

2
0,κ

]
. (3.15)

From (3.15) and (3.8) we have that

‖σh
δ (U−

δ )− σ(U−
δ )‖L2(0,T ;Lq(Ω)) ≤ C(T )

[
δ + h

2
q ‖U−

δ ‖
2
q

L2(0,T ;H1(Ω))

]
≤ C(T )

[
δ + h

2
q

]
. (3.16)
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Combining (3.14) and (3.16), and noting (3.7a) and our assumption on δ, yields the desired result (3.7b). The
result (3.7c) follows immediately from (3.7b), and the result (3.7d) follows similarly to (3.7b).

It remains to be shown that v ∈ ρ(u) for a.e. (x, t) ∈ ΩT . It follows from the monotonicity of ρ and as
Uδ = πh[ψ(Vδ)] that∫

ΩT

(ρ(η)− Vδ) [(η − Uδ) + (πh − I)ψ(Vδ)] dxdt ≥ 0 ∀ η ∈ L2(ΩT ). (3.17)

Furthermore, it follows from (2.5) that

‖(πh − I)ψ(Vδ)‖L2(ΩT ) ≤ C h ‖Uδ‖L2(0,T ;H1(Ω)). (3.18)

Combining (3.17) and (3.18), on noting (3.8), (3.7a) and (3.6f), yields that as h→ 0∫
ΩT

(ρ(η)− v) (η − u) dxdt ≥ 0 ∀ η ∈ L2(ΩT )

and hence that v ∈ ρ(u) for a.e. (x, t) ∈ ΩT due to the monotonicity of ρ. �
We now adapt the arguments in [9, 10] in order to show that {φ, u, v} is indeed a weak solution of (P),

(1.1a–e).
Let A be defined by

A := {f ∈ C0,1(R) : sup
s∈R

|f(s)| <∞ and inf{s ∈ R : f(s) 
= 0} > 0 }. (3.19)

Furthermore, for any w ∈ L2(0, T ;H1(Ω)) let Xw ⊂ L∞(ΩT ) be defined by

Xw := {ϕ ∈ L∞(ΩT ) : f(w)ϕ ∈ L2(0, T ;H1(Ω)) ∀ f ∈ A}. (3.20)

Lemma 3.2. Let the assumptions of Lemma 3.1 hold. It follows that the subsequence {Φ+
δ , Uδ, Vδ}h in

Lemma 3.1 is such that for all f ∈ A

f(U−
δ )Φ+

δ → f(u)φ weakly in L2(0, T ;H1(Ω)) as h→ 0. (3.21)

In particular, φ ∈ Xu.

Proof. Let f ∈ A with Lipschitz constant Lf , sups∈R
|f(s)| ≤ Mf and cf := inf{s ∈ R : f(s) 
= 0} > 0. We

have, on noting (3.7a), that

‖f(U−
δ )− f(u)‖L2(ΩT ) ≤ Lf ‖U−

δ − u‖L2(ΩT ) → 0 as h→ 0 . (3.22)

Combining (3.22) and (3.6a) yields that

f(U−
δ )Φ+

δ → f(u)φ weakly in L2(ΩT ) as h→ 0 . (3.23)

It follows from (3.8) that

‖∇[f(U−
δ )Φ+

δ ]‖L2(ΩT ) ≤ ‖∇[f(U−
δ )] Φ+

δ ‖L2(ΩT ) + ‖f(U−
δ )∇Φ+

δ ‖L2(ΩT )

≤ Lf ‖U−
δ ‖L2(0,T ;H1(Ω)) ‖Φ+

δ ‖L∞(ΩT ) +Mf

(∫
U−

δ >cf

|∇Φ+
δ |2 dx dt

) 1
2

≤ C(Mf , Lf , T )

[
1 +

∫
U−

δ >cf

|∇Φ+
δ |2 dx dt

] 1
2

. (3.24)
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Moreover, if U−
δ (x) > cf for some x ∈ κ, then there exists a j ∈ J such that pj is a vertex of κ and U−

δ (pj) > cf .
Hence it holds that

σh
δ (U−

δ ) |κ :=
∫

κ
− πh[σδ(U−

δ )] >
1

d+ 1
σδ(cf ) >

1
d+ 1

σ(cf ) > 0 . (3.25)

Combining (3.24), (3.25) and (3.8) yields that

‖f(U−
δ )Φ+

δ ‖L2(0,T ;H1(Ω)) ≤ C(cf ,Mf , Lf , T ) . (3.26)

The desired result (3.21) then follows from (3.23) and (3.26). Finally, on noting (3.5), (3.20) and (3.21), we
have that φ ∈ Xu. �

Lemma 3.3. Let the assumptions of Lemma 3.1 hold. Then the limit g in (3.6b) is such that

g = [σ(u)]
1
2 ∇φ a.e. on Pu := {(x, t) ∈ ΩT : u(x, t) > 0}. (3.27)

Proof. The proof is similar to the proof in [9], Lemma 3.4. It follows from (3.6d), (3.7a) and (1.11a,b) that
given ε > 0, there exists a ϑε ∈ L1(0, T ;W 1,1(Ω)) satisfying (1.11b), with s = 1, and a further subsequence of
the subsequence {Φ+

δ , Uδ, Vδ}h in Lemma 3.1 such that

U−
δ → u uniformly on {ϑε > 0} as h→ 0. (3.28)

Now fix f ∈ A with cf := inf{s ∈ R : f(s) 
= 0} > 0. It follows immediately from (3.28) that, for h sufficiently
small,

U−
δ ≥

1
2
cf on {ϑε > 0} ∩ {u > cf}.

Subsequently, we choose f1 ∈ A such that f1 = 1 on [12 cf ,∞). Now (3.6b) combined with (3.7c), Lemma 3.2,
[σ(u)]

1
2 ϑε f(u) ∈ L∞(ΩT ) and a density argument implies that

g ϑε f(u)← [σh
δ (U−

δ )]
1
2 ∇Φ+

δ ϑε f(u) = [σh
δ (U−

δ )]
1
2 ∇(f1(U−

δ )Φ+
δ )ϑε f(u)

→ [σ(u)]
1
2 ∇(f1(u)φ)ϑε f(u) = [σ(u)]

1
2 ∇φϑε f(u) weakly in L2(ΩT ).

Repeating the above for any f ∈ A, we have that

g ϑε f(u) = [σ(u)]
1
2 ∇φϑε f(u) a.e. on ΩT ∀ f ∈ A.

Now letting ε→ 0, and noting (1.11b), yields that

g f(u) = [σ(u)]
1
2 ∇φ f(u) a.e. on ΩT ∀ f ∈ A.

This implies the desired result (3.27). �

With just the weak convergence (3.6b); it is not possible to pass to the limit h → 0 on the right hand side
of (2.18b), and hence prove convergence of (Ph,τ

δ ) to (P). Therefore the following lemma plays a crucial role.

Lemma 3.4. Let the assumptions of Lemma 3.1 hold. Then the subsequence {Φ+
δ , Uδ, Vδ}h in Lemma 3.1 is

such that

[σh
δ (U−

δ )]
1
2 ∇Φ+

δ → g strongly in L2(ΩT ) as h→ 0, and g = 0 on ΩT \ Pu. (3.29)
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Proof. The proof is similar to the proof in [10], Lemma 2.5. Choosing χ ≡ Φ+
δ −πhφ

+
in (3.4a) yields, on noting

(3.7c), (3.6b), (2.19), (1.2b), the notation (3.1a,b), τ → 0 as h→ 0, (3.27) and as σ(u) = 0 on ΩT \ Pu, that∫
ΩT

σh
δ (U−

δ ) |∇Φ+
δ |

2 dxdt =
∫

ΩT

σh
δ (U−

δ )∇Φ+
δ .∇

[
πhφ

+
]

dxdt

→
∫

ΩT

[σ(u)]
1
2 g .∇φ dxdt =

∫
Pu

σ(u)∇φ .∇φ dxdt as h→ 0 . (3.30)

Similarly, it follows on choosing πhη� in (3.4a), where η� ∈ L∞(0, T ;H1
φ,0(Ω) ∩W 1,∞(Ω)), and noting (3.7c),

(3.6b), (2.19), (3.27), a density argument and σ(u) = 0 on ΩT \ Pu, that∫
ΩT

[σ(u)]
1
2 g .∇η dxdt =

∫
Pu

σ(u)∇φ .∇η dxdt = 0 ∀ η ∈ L2(0, T ;H1
φ,0(Ω)). (3.31)

Next, we observe on noting (1.6) that

∫ 1

0

[σ(q)]−
1
2 dq =∞ =⇒ ∀ ε > 0, ∃ a unique µ(ε) ∈ (0, ε) s.t.

∫ ε

µ

[σ(q)]−
1
2 dq = 1. (3.32)

Let fµ,ε ∈ A be defined by

fµ,ε(s) :=


1 if s ≥ ε,∫ s

µ [σ(q)]−
1
2 dq if s ∈ [µ, ε],

0 if s ≤ µ;
=⇒ f ′

µ,ε(s) :=


0 if s > ε,

[σ(s)]−
1
2 if s ∈ (µ, ε),

0 if s < µ.

(3.33)

Choosing η ≡ fµ,ε(u) (φ− φ) in (3.31) and recalling (3.33), we obtain that∫
Pu

σ(u)∇φ .∇(φ − φ) dxdt = lim
ε→0

∫
Pu

σ(u)∇φ .∇(φ − φ) fµ,ε(u) dxdt

= − lim
ε→0

∫
{µ<u<ε}∩Pu

[σ(u)]
1
2 ∇φ .∇u (φ − φ) dxdt = 0. (3.34)

Combining (3.6b), (3.30) and (3.34) yields that∫
ΩT

|g|2 dxdt ≤ lim
h→0

∫
ΩT

σh
δ (U−

δ ) |∇Φ+
δ |2 dxdt =

∫
Pu

σ(u) |∇φ|2 dxdt. (3.35)

This together with (3.27) implies that g = 0 on ΩT \Pu. Therefore it follows from this, (3.35), (3.6b) and (3.27)
that ∫

ΩT

| [σh
δ (U−

δ )]
1
2 ∇Φ+

δ − g |2 dxdt→ 0 as h→ 0,

and hence the desired result (3.29). �

Theorem 3.5. Let the assumptions of Lemma 3.1 hold. Then there exists a subsequence of {Φ+
δ , Uδ, Vδ}h, where

{Φ+
δ , Uδ, Vδ} solve (Ph,τ

δ ), and functions {φ, u, v} satisfying (3.5) such that as h→ 0 the following hold: (3.6a–f),
(3.7a–d), (3.29) and (3.27). Furthermore, we have that {φ, u, v} fulfil φ ∈ Xu, φ = φ on (Γφ

D ∩ Pu) × (0, T ],
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v ∈ ρ(u) for a.e. (x, t) ∈ ΩT ; and they satisfy∫
Pu

σ(u)∇φ .∇η dxdt = 0 ∀ η ∈ L2(0, T ;H1
φ,0(Ω)) , (3.36a)

−
∫

ΩT

v
∂η

∂t
dxdt−

∫
Ω

v0 η(x, 0) dx +
∫

ΩT

α(u)∇u .∇η dxdt+
∫ T

0

∫
Γu

N

γ (u− uN ) η ds dt

=
∫

Pu

σ(u) |∇φ|2 η dxdt ∀ η ∈ L2(0, T ;H1
u,0(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L∞(ΩT ) with η(·, T ) = 0.

(3.36b)

Proof. The desired result (3.36a) follows immediately from (3.31). Noting (3.21), (3.8), (3.7a) and (2.19) we
have for f ∈ A, recall (3.19), that as h→ 0

f(U−
δ ) [Φ+

δ − π
hφ

+
]→ f(u) [φ− φ] weakly in L2(0, T ;H1(Ω)) =⇒ weakly in L2(0, T ;L2(∂Ω)) . (3.37)

As Φ+
δ = πhφ

+
on Γφ

D and τ → 0 as h→ 0, it follows from (3.37) that φ = φ on (Γφ
D ∩ Pu)× (0, T ].

We now consider (3.36b). For any η ∈ H1(0, T ;H1
u,0(Ω) ∩W 1,∞(Ω)) with η(·, T ) = 0, we choose χ ≡ πhη

in (3.4b) and now analyse the subsequent terms. Firstly (2.22), the embedding H1(0, T ;X) ↪→ C([0, T ];X),
(3.8) and (2.19) yield that

∣∣∣∣∣
∫ T

0

[(
∂Vδ

∂t
, πhη

)h

+
(
Vδ,

∂(πhη)
∂t

)]
dt+ (Vδ(·, 0), πhη(·, 0))

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0

[(
Vδ,

∂(πhη)
∂t

)
−
(
Vδ,

∂(πhη)
∂t

)h
]

dt

∣∣∣∣∣+ ∣∣ (Vδ(·, 0), πhη(·, 0))− (Vδ(·, 0), πhη(·, 0))h
∣∣

≤ C h ‖Vδ‖L∞(0,T ;L2(Ω)) ‖πhη‖H1(0,T ;H1(Ω)) ≤ C h ‖η‖H1(0,T ;W 1,∞(Ω)). (3.38)

Furthermore, it follows from the embedding H1(0, T ;X) ↪→ C([0, T ];X), and (3.8) that

∣∣∣∣∣
∫ T

0

(
Vδ,

∂((I − πh)η)
∂t

)
dt

∣∣∣∣∣+ |(Vδ(·, 0), (I − πh)η(·, 0))|

≤ C ‖Vδ‖L∞(0,T ;L2(Ω)) ‖(I − πh)η‖H1(0,T ;H1(Ω)) ≤ C ‖(I − πh)η‖H1(0,T ;H1(Ω)). (3.39)

Combining (3.38), (3.39), (2.19) and (3.6f) yields that

∫ T

0

(
∂Vδ

∂t
, πhη

)h

dt→ −
∫ T

0

(
v,
∂η

∂t

)
dt− (v0, η(·, 0)) as h→ 0. (3.40)

Moreover, it holds on noting (2.23), (2.19), (1.2a), (2.14), (2.16), (2.20) and (3.8) that

∣∣∣∣∣
∫ T

0

∫
Γu

N

(
πh[γ (U+

δ − uN ) η]− (πhγ) (U+
δ − πhuN )πhη

)
ds dt

∣∣∣∣∣
≤ C h

[
‖πhγ‖1 ‖πh[(U+

δ − uN ) η] ‖L1(0,T ;H1(Ω)) + |πhγ|0,∞ ‖U+
δ − π

huN‖L2(0,T ;H1(Ω)) ‖πhη‖L2(0,T ;H1(Ω))

]
≤ C h ‖γ‖1,r ‖U+

δ − π
huN‖L2(0,T ;H1(Ω)) ‖πhη‖L2(0,T ;W 1,∞(Ω)) ≤ C h ‖η‖L2(0,T ;W 1,∞(Ω)). (3.41)
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In view of (3.8), (2.19), (1.2a) and (2.17) we deduce that∣∣∣∣∣
∫ T

0

(σh
δ (U−

δ )∇Φ+
δ ,∇(I − πh)η) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

(αh(U−
δ )∇U+

δ ,∇(I − πh)η) dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫
Γu

N

(πhγ) (U+
δ − πhuN ) (I − πh)η ds dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

([σh
δ (U−

δ )]
1
2 ∇Φ+

δ [ [ (I − πh)η] I + ( (πhη) I −D(πhη) ) ] [σh
δ (U−

δ )]
1
2 ∇Φ+

δ ) dt

∣∣∣∣∣
≤ C

[
‖(I − πh)η‖L∞(0,T ;W 1,∞(Ω)) + h ‖πhη‖L∞(0,T ;W 1,∞(Ω))

]
. (3.42)

Combining (3.4b), (3.40), (3.41), (3.42), (2.19), (3.29), (3.27), (3.7c,d), (3.6d,e), (1.2a) and the denseness of
H1(0, T ; W 1,∞(Ω)) in L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L∞(ΩT ) yields the desired result (3.36b). �

We note that if one could establish uniqueness of the weak solution {φ, u, v} in Theorem 3.5, then convergence
of the full sequence {Φ+

δ , Uδ, Vδ}h would follow immediately. However, the lack of a uniqueness proof restricts
us to subsequence convergence.

4. Numerical results

Before presenting some numerical results in two space dimensions, we briefly state algorithms for solving
the resulting system of algebraic equations for {Φn

δ , U
n
δ , V

n
δ } arising at each time level from the approximation

(Ph,τ
δ ). As (2.18a) is independent of {Un

δ , V
n
δ }, we first solve the resulting linear equation to obtain Φn

δ . To this
end we employ a preconditioned conjugate gradient method.

Adopting the obvious notation, the system (2.18b) can be rewritten as: find {Un
δ , V

n
δ } ∈ R

J ×R
J such that

M V n
δ + τnA

n−1 Un
δ = r and V n

δ ∈ ρ(Un
δ ); (4.1)

where M and An−1 are symmetric J × J matrices, J := #J , with entries

Mij := (χi, χj)h, An−1
ij := (αh(Un−1

δ )∇χi,∇χj) +
∫

Γu
N

πh[γ χi χj ] ds

and r := M V n−1
δ + s ∈ R

J , sj := (σh
δ (Un−1

δ )∇Φn
δ , D(χj)∇Φn

δ ) +
∫

Γu
N

πh[γ uN χj ] ds .

A modified version of the standard SOR algorithm to solve (4.1), with a global convergence proof, can be found
in [3]. We briefly describe the method here. Given Un,0

δ , for each j = 1→ J one has to solve

Mjj [V n,k
δ ]j + τnA

n−1
jj [Un,k

δ ]j = r̂j , [V n,k
δ ]j ∈ ρ([Un,k

δ ]j); (4.2a)

where r̂j depends on r, Un,k−1
δ and already computed entries of Un,k

δ . On obtaining the unique [Un,k
δ ]j from

the simple nonlinear scalar equation (4.2a), we perform a relaxation step

[Un,k
δ ]j = ωk

j [Un,k
δ ]j + (1− ωk

j ) [Un,k−1
δ ]j (4.2b)

where ωk
j = 1 if [Un,k

δ ]j · [Un,k−1
δ ]j ≤ 0 and ωk

j = ω ∈ (0, 2) otherwise, and set

[V n,k
δ ]j =

r̂j − τn An−1
jj [Un,k

δ ]j
Mjj

· (4.2c)
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Figure 1. Triangulation of Ω.

For the iterative algorithm (4.2a–c) we set for n ≥ 1, {Un,0
δ , V n,0

δ } ≡ {Un−1
δ , V n−1

δ } and adopted the stopping
criterion

|V n,k
δ − V n,k−1

δ |0,∞ < tol,

with tol = 10−8.
We chose Ω to be the domain (− 3

4 ,
3
4 ) × (− 1

2 ,
1
2 ) \

{
[− 3

8 ,−
1
4 ]× [0, 1

2 ] ∪ [38 ,
1
4 ]× [0, 1

2 ]
}

and for simplicity
partitioned the domain into uniform right-angled isoceles triangles. An example triangulation of Ω can be seen
in Figure 1. Obviously, a more accurate approximation can be obtained by using a finer mesh in the vicinity of
the non-convex angles of Ω in order to approximate better the generated local gradient singularities in φ and u.
The boundary data was chosen to be

uD ≡ −1, uN ≡ 1, γ ≡ 1, and φ = ±1 on Γ±.

The initial data v0 to (P) was chosen such that u0 = ψ(v0) had the form

u0(x) := min{−1 + β(x), 1}, where β ∈ H1
u,0(Ω) ∩W 1,∞(Ω) with β(x) ≥ 0 (4.3)

and u0 = 0 on a curve. We then set U0
δ = πhu0 and V 0

δ (pj) ∈ ρ(U0
δ (pj)) for all j ∈ J with V 0

δ (pj) = 1
2 λ

if U0
δ (pj) = 0. (4.3) models an initial temperature distribution between −1 and 1; satisfying the Dirichlet

boundary conditions on u. In particular, we implemented, on recalling that x = (x1, x2) with x1 the horizontal
variable,

(i) β(x) :=

{
20 max{x2 − 2

5 , 0} if |x1| ≤ 1
4 ,

0 otherwise;
and (ii) β(x) := 20 max{1

4
− r(x), 0} ,

where r(x) := (1
4 x

2
1 + x2

2)
1
2 . (4.3)(i) gives rise to a strip between the two electrodes as the initial conducting

region, {u0 > 0}, see the first plot in Figure 2; whilst (4.3)(ii) gives rise to an elliptical region, see the first plot
in Figure 5. For the other data (1.3), (1.5) and (1.7) to (P) we chose ρ± = λ = 1, α ≡ 1, s0 = 1, p = 2. In all
the experiments below we plot the contour Vδ(, x, t) = 0 at different times t in order to see the evolution of the
conducting region.

Our first experiment shows the evolution of a conducting strip between the electrodes, i.e. u0 is given by
(4.3)(i), without (σ0 = 0) and with (σ0 = 5) the effect of Joule heating, respectively, until T = 5.

For the experiment with σ0 = 5 we investigated convergence of our approximation by starting with h =
√

2
32 ,

τ = δ = 2 × 10−2, see Figure 2, and successively halving the parameters h, τ and δ and checking agreement
between the contours on successive meshes. We are satisfied that the results obtained for the choice h =

√
2

128 ,
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Figure 2. (σ0 = 5) Contour plot for Vδ(x, t) = λ
2 at times t = 0, 0.1, 0.3, 0.5, 0.6, 5.
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Figure 3. (σ0 = 5) Contour plot for Vδ(x, t) = λ
2 at times t = 0, 0.1, 0.3, 0.5, 0.6, 5.

τ = δ = 5 × 10−3 show a converged solution, see Figure 3. For the above crude and fine choices of h we chose
ω = 1.7 and 1.85, respectively, for the iterative algorithm (4.2a–c). The plot for t = T is very close to a steady
state. In Figure 4 we repeat the experiment with the fine mesh parameters in the case of no Joule heating
(σ0 = 0) being present, with all remaining parameters fixed as before. Again, the plot for t = T is very close to
a steady state. Comparing Figures 3 and 4, we see the effect of Joule heating on the conducting/molten region.

Our second experiment, see Figure 5, is with all parameters, including the mesh parameters, the same as
for Figure 3; that is, with Joule heating being present (σ0 = 5), but now with the initial data (ii) in (4.3) as
opposed to (i). We note that the quasi steady states in Figures 3 and 5 are very similar, despite very different
initial data. Furthermore, we note that the approximation with D(χ) in (3.4b) replaced by χ yielded graphically
indistinguishable results throughout.
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Figure 4. (σ0 = 0) Contour plot for Vδ(x, t) = λ
2 at times t = 0, 0.1, 0.3, 0.5, 0.6, 5.
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Figure 5. (σ0 = 5) Contour plot for Vδ(x, t) = λ
2 at times t = 0, 0.025, 0.05, 0.1, 0.3, 5.
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