@article{M2AN_1992__26_1_95_0,
author = {Chuang, J.-H. and Hoffmann, Ch. M.},
title = {Curvature computations on surfaces in $n$-space},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {95--112},
year = {1992},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {26},
number = {1},
mrnumber = {1155002},
zbl = {0752.65104},
language = {en},
url = {https://www.numdam.org/item/M2AN_1992__26_1_95_0/}
}
TY - JOUR AU - Chuang, J.-H. AU - Hoffmann, Ch. M. TI - Curvature computations on surfaces in $n$-space JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1992 SP - 95 EP - 112 VL - 26 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1992__26_1_95_0/ LA - en ID - M2AN_1992__26_1_95_0 ER -
%0 Journal Article %A Chuang, J.-H. %A Hoffmann, Ch. M. %T Curvature computations on surfaces in $n$-space %J ESAIM: Modélisation mathématique et analyse numérique %D 1992 %P 95-112 %V 26 %N 1 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1992__26_1_95_0/ %G en %F M2AN_1992__26_1_95_0
Chuang, J.-H.; Hoffmann, Ch. M. Curvature computations on surfaces in $n$-space. ESAIM: Modélisation mathématique et analyse numérique, Topics in computer aided geometric design , Tome 26 (1992) no. 1, pp. 95-112. https://www.numdam.org/item/M2AN_1992__26_1_95_0/
[1] and (1987), An Algorithm for Piecewise Linear Approximation of Implicity Defined 2-Dimensional Surfaces, SIAM J. Num. Anal. 24, 452-469. | Zbl | MR
[2] (1985), Gröbner Bases : An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional Systems Theory, N.L. Bose, éd., D. Reidel Publishing Co., Dordrecht, Holland; 184-232. | Zbl | MR
[3] , and (1988), Algebraic Methods for Geometric Reasoning, Ann. Rev. Comp. Sci, 3, 85-120. | MR
[4] (1848), On the Theory of Elimination, Cambridge and Dublin Math. J. 3, 116-120.
[5] (1990), Base Points, Resultants, and the Implicit Representation of Rational Surfaces, PhD Diss., Comp. Sci., Univ. Waterloo, Canada.
[6] , (1990), Variable Radius Blending with Cyclides, in Geometric Modeling for Product Engineering, K. Preiss, J. Turner, M.Wozny, eds., North Holland, 39-58.
[7] , (1989), Constant Scallop Height Tool Path Generation, Rept. UUCS-89-011, Comp. Sci., Univ. Utah.
[8] (1990), Surface Approximations in Geometric Modeling, PhD Diss., Comp. Sci., Purdue University.
[9] and (1989), On Local Implicit Approximation and lts Applications, ACM Trans. Graphics 8, 298-324. | Zbl
[10] (1987), Computing offsets of B-spline curves, Comput. Aided Design 19, 305-309. | Zbl
[11] and (1990), A Geometric Investigation of the Skeleton of CSG Objects, Report CSD-TR-955, Comp. Sci., Purdue Univ.
[12] (1986), The Approximation of Nondegenerate Offset Surfaces, Comp. Aided Geom. Design 3, 15-43. | Zbl
[13] and (1989), Some Analytic and Algebraic Properties of Plane Offset Curves, Rept. RC 14364, IBM Yorktown Heights. | MR
[14] (1989), Geometric and Solid Modeling, An Introduction, Morgan Kaufmann Publ., San Mateo, Cal.
[15] (1990), A Dimensionality Paradigm for Surface Interrogation, to appear in Comput. Aided Geom. Design. | Zbl | MR
[16] (1990), Algebraic and Numerical Techniques for Offsets and Blends, in Computations of Curves and Surfaces, W. Dahmen, M. Gasca,C. Micchelli, eds., Kluwer Acad. Publ., 499-528. | Zbl | MR
[17] and (1982), Programming with Equations, ACM Trans. Progr. Lang 4, 83-112. | Zbl
[18] (1985), Offset curves in the plane, Comput. Aided Design 17, 11-82.
[19] (1988), Spline approximation of offset curves, Comput. Aided Geom. Design 5, 33-40. | Zbl | MR
[20] , , (1990), A geometrical method for smooth joining and interpolation of curves and surfaces, Comput. Aided Geom. Design 7. | MR
[21] (1966), Elementary Differential Geometry, Academic Press. | Zbl | MR
[22] (1988), Offset approximation of uniform B-splines, Comput. Aided Design 20, 411-414. | Zbl
[23] (1988), Exact second order continuous interactive surface blending with variable sweep Geometric modeling, J. Offshore Mech. Aretic Engrg.
[24] and (1989), A Simple Practical Criterion to Guarantee Second-Order Smoothness of Blend Surfaces, Proc. 1989 ASME Design Autom. Conf-, Montreal, Canada.
[25] , (1986), Offsetting operationsin solid modeling, Comput. Aided Geom. Design 3, 129-148. | Zbl
[26] , , (1988), Offsetting in geometric modeling, Comput. Aided Design 20, 67-74. | Zbl





