Curves from variational principles
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 26 (1992) no. 1, p. 77-93
@article{M2AN_1992__26_1_77_0,
     author = {Micchelli, Ch. A.},
     title = {Curves from variational principles},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {26},
     number = {1},
     year = {1992},
     pages = {77-93},
     zbl = {0748.65016},
     mrnumber = {1155001},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1992__26_1_77_0}
}
Curves from variational principles. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 26 (1992) no. 1, pp. 77-93. http://www.numdam.org/item/M2AN_1992__26_1_77_0/

[1] M. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976. | MR 394451 | Zbl 0326.53001

[2] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press, 1988. | MR 974109 | Zbl 0694.68004

[3] T. A. Foley, Interpolation with Internal and Point Tension Controls Using Cubic Weighted v-splines, ACM Trans. Math. Software 13 (1987), pp. 68-96. | MR 896535 | Zbl 0626.65008

[4] T. A. Foley and G. M. Nielson, Knot Selection for Parametric Spline Interpolation, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche and L. L. Schumaker, Academic Press, 1989, pp. 261-271. | MR 1022713 | Zbl 0677.41013

[5] R. Franke, Recent Advances in the Approximation of Surfaces from Scattered Data, in Topics in Multivanate Approximation, eds., C. K. Chui, L. L. Schumaker, and F. I. Utreras, Academic Press, Boston, 1987. | MR 924824 | Zbl 0629.41021

[6] J. W. Jerome, and S. D. Fisher, Minimum Norm Extremals in Function Spaces with Applications to Classical and Modern Analysis, Lecture Notes in Math. 479, Springer-Verlag, Berlin, 1975. | MR 442780 | Zbl 0307.41027

[7] S. Karlin, Total Positivity, Vol. 1, Stanford University Press, Stanford, 1968. | MR 230102 | Zbl 0219.47030

[8] S. Karlin, Interpolation Properties of Generalized Perfect Splines and the Solutions of Certain Extremal Problems I, Trans. Amer. Math. Soc., 206 (1975), pp. 25-66. | MR 367512 | Zbl 0303.41011

[9] L. D. Landau, and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, New York, 1959. | MR 106584

[10] E. H. Lee, and G. E. Forsythe, Variational Study of Nonlinear Spline Curves, SIAM Rev. 15 (1973), pp. 120-133. | MR 331716 | Zbl 0253.73045

[11] S. Marin, An Approach to Data Parametrization in Parametric Cubic Spline Interpolation Problems, J. Approx. Theory 41 (1984), pp. 64-86. | MR 742237 | Zbl 0558.41006

[12] C. A. Micchelli and F. I. Utreras, Smoothing and Interpolation in a Convex Set of Hilbert Space, SIAM. J. Sci. Stat. Comp. 9 (1988), pp. 728-746. | MR 945935 | Zbl 0651.65046

[13] G. M. Nielson, Some Piecewise Polynomial Alternatives to Spline Under Tension, in Computer Aided Geometric Design, eds., R. E. Barnhill, and R. F. Riesenfeld, Academic Press (1974), pp. 209-235. | MR 371012

[14] K. Scherer, Best Interpolation with Free Nodes by Closed Curves, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche, and L. L. Schumaker, Academic Press, 1989, pp. 549-559. | MR 1022734 | Zbl 0675.41008

[15] G. S. Sidhu, and H. L. Weinert, Vector-valued Lg-splines, J. Math. Anal., Appl. 70 (1979), pp. 505-529. | MR 543591 | Zbl 0435.65007