Curves from variational principles
ESAIM: Modélisation mathématique et analyse numérique, Volume 26 (1992) no. 1, pp. 77-93.
@article{M2AN_1992__26_1_77_0,
     author = {Micchelli, Ch. A.},
     title = {Curves from variational principles},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {77--93},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {26},
     number = {1},
     year = {1992},
     mrnumber = {1155001},
     zbl = {0748.65016},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1992__26_1_77_0/}
}
TY  - JOUR
AU  - Micchelli, Ch. A.
TI  - Curves from variational principles
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1992
SP  - 77
EP  - 93
VL  - 26
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1992__26_1_77_0/
LA  - en
ID  - M2AN_1992__26_1_77_0
ER  - 
%0 Journal Article
%A Micchelli, Ch. A.
%T Curves from variational principles
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1992
%P 77-93
%V 26
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1992__26_1_77_0/
%G en
%F M2AN_1992__26_1_77_0
Micchelli, Ch. A. Curves from variational principles. ESAIM: Modélisation mathématique et analyse numérique, Volume 26 (1992) no. 1, pp. 77-93. http://www.numdam.org/item/M2AN_1992__26_1_77_0/

[1] M. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976. | MR | Zbl

[2] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press, 1988. | MR | Zbl

[3] T. A. Foley, Interpolation with Internal and Point Tension Controls Using Cubic Weighted v-splines, ACM Trans. Math. Software 13 (1987), pp. 68-96. | MR | Zbl

[4] T. A. Foley and G. M. Nielson, Knot Selection for Parametric Spline Interpolation, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche and L. L. Schumaker, Academic Press, 1989, pp. 261-271. | MR | Zbl

[5] R. Franke, Recent Advances in the Approximation of Surfaces from Scattered Data, in Topics in Multivanate Approximation, eds., C. K. Chui, L. L. Schumaker, and F. I. Utreras, Academic Press, Boston, 1987. | MR | Zbl

[6] J. W. Jerome, and S. D. Fisher, Minimum Norm Extremals in Function Spaces with Applications to Classical and Modern Analysis, Lecture Notes in Math. 479, Springer-Verlag, Berlin, 1975. | MR | Zbl

[7] S. Karlin, Total Positivity, Vol. 1, Stanford University Press, Stanford, 1968. | MR | Zbl

[8] S. Karlin, Interpolation Properties of Generalized Perfect Splines and the Solutions of Certain Extremal Problems I, Trans. Amer. Math. Soc., 206 (1975), pp. 25-66. | MR | Zbl

[9] L. D. Landau, and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, New York, 1959. | MR

[10] E. H. Lee, and G. E. Forsythe, Variational Study of Nonlinear Spline Curves, SIAM Rev. 15 (1973), pp. 120-133. | MR | Zbl

[11] S. Marin, An Approach to Data Parametrization in Parametric Cubic Spline Interpolation Problems, J. Approx. Theory 41 (1984), pp. 64-86. | MR | Zbl

[12] C. A. Micchelli and F. I. Utreras, Smoothing and Interpolation in a Convex Set of Hilbert Space, SIAM. J. Sci. Stat. Comp. 9 (1988), pp. 728-746. | MR | Zbl

[13] G. M. Nielson, Some Piecewise Polynomial Alternatives to Spline Under Tension, in Computer Aided Geometric Design, eds., R. E. Barnhill, and R. F. Riesenfeld, Academic Press (1974), pp. 209-235. | MR

[14] K. Scherer, Best Interpolation with Free Nodes by Closed Curves, in Mathematical Methods in Computer Aided Geometric Design, eds., T. Lyche, and L. L. Schumaker, Academic Press, 1989, pp. 549-559. | MR | Zbl

[15] G. S. Sidhu, and H. L. Weinert, Vector-valued Lg-splines, J. Math. Anal., Appl. 70 (1979), pp. 505-529. | MR | Zbl