@article{M2AN_1992__26_1_23_0,
author = {Prautzsch, H.},
title = {On convex {B\'ezier} triangles},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {23--36},
year = {1992},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {26},
number = {1},
mrnumber = {1154998},
zbl = {0748.41016},
language = {en},
url = {https://www.numdam.org/item/M2AN_1992__26_1_23_0/}
}
Prautzsch, H. On convex Bézier triangles. ESAIM: Modélisation mathématique et analyse numérique, Topics in computer aided geometric design , Tome 26 (1992) no. 1, pp. 23-36. https://www.numdam.org/item/M2AN_1992__26_1_23_0/
[1] and , The convexity of Bernstein polynomials over triangles, J. Approx. Theory 40, (1984), 11-28. | Zbl | MR
[2] and , A new proof for the convexity of the Bernstein - Bézier surfaces over triangles, Chinese Ann. Math, Ser., B6 (2), (1985), 172-176. | Zbl | MR
[3] and , Convergence of Bézier triangular nets and a theorem by Pólya, J. Approx. Theory, Vol. 58, N°. 3, (1989), 247-258. | Zbl | MR
[4] , and , A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1, (1984), 1-60. | Zbl
[5] and , Subdivision algoritmus for the génération of box simple surfaces, Compt. Aided Geom. Desing 1, (1984), 115-129. | Zbl | MR
[6] and , Convexity of multivariate Bernstein polynomials and box spline surfaces, Studia Sci. Math. Hungar. 23, (1988), 265-287. | Zbl | MR
[7] , Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design, Vol. 3, Number 2, (1986), 83-127. | MR
[8] , Convexity of Bézier nets on triangulations, to appear in Comput. Aided Geom. Design. | Zbl | MR
[9] , On convexity of piecewise polynomial functions on triangulations, Comput. Aided Geom. Design 6, (1989), 181-187. | Zbl | MR
[10] and , Convexity of Bézier nets on sub-triangles, Technical Report 04/90, Brunel University, Dept. of Math. and Statistics, March (1990). | Zbl | MR
[11] and , Convexity of Bernstein Polynomials on the standard triangle, preprint.
[12] , , Computing surfaces invariant under subdivision, Comput. Aided Geom. Design 4, (1987), 321-328. | Zbl | MR
[13] , Unterteilungsalgorithmen für multivariate Splines - Ein geometrischer Zugang, Diss., TU Braunschweig (1983/84). | Zbl






