@article{M2AN_1992__26_1_1_0, author = {Hoschek, J. and Seemann, G.}, title = {Spherical splines}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, pages = {1--22}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {1}, year = {1992}, zbl = {0755.41011}, mrnumber = {1154997}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_1_1_0/} }
TY - JOUR AU - Hoschek, J. AU - Seemann, G. TI - Spherical splines JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique PY - 1992 DA - 1992/// SP - 1 EP - 22 VL - 26 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1992__26_1_1_0/ UR - https://zbmath.org/?q=an%3A0755.41011 UR - https://www.ams.org/mathscinet-getitem?mr=1154997 LA - en ID - M2AN_1992__26_1_1_0 ER -
Hoschek, J.; Seemann, G. Spherical splines. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 1, pp. 1-22. http://www.numdam.org/item/M2AN_1992__26_1_1_0/
[1] Curves and surfaces for Computer Aided Geometrie Design (sec. ed.) Academic Press, 1990. | MR 1058011 | Zbl 0702.68004
,[2] Pythagorean hodographs. Submitted to IBM, J. Res. Develop., 1990. | MR 1084084
, ,[3] Intrinsic parametrization for approximation. Comput. Aided Geom. Design 5 (1988), 27-31. | MR 945303 | Zbl 0644.65011
,[4] Optimal approximate conversion of spline surfaces. Comput. Aided Geom. Design 6 (1989), 293-306. | MR 1030616 | Zbl 0682.65005
, , ,[5] Grundlagen der geometrischen Datenverarbeitung. Teubner, 1989. | MR 1055828 | Zbl 0682.68002
, ,[6] Circular Splines. Submitted to Computer-aided design, 1990. | Zbl 0763.65005
,[7] Pythagorean triples in unique factorization domains. Amer. Math. Monthly 79 (1972), 503-505. | MR 297690 | Zbl 0242.10008
,[8] On the use of infinite control points in CAGD. Comput. Aided Geom. Design 4 (1987), 155-166. | MR 898031 | Zbl 0622.65142
,[9] Interpolation und Approximation mit sphärischen Kreissplines in Bézier-Darstellung. Dipl.-Arbeit Fachbereich Mathematik, Technische Hochschule Darmstadt 1990.
,