Odlyzko, A. M.
Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results
Journal de théorie des nombres de Bordeaux, Tome 2 (1990) no. 1 , p. 119-141
Zbl 0722.11054 | MR 1061762 | 3 citations dans Numdam
URL stable : http://www.numdam.org/item?id=JTNB_1990__2_1_119_0

Nous présentons une bibliographie d'articles récents sur les bornes inférieures des discriminants de corps de nombres et sur des sujets voisins. Nous discutons quelques unes des principales méthodes, et nous donnons les résultats principaux et des problèmes ouverts.
A bibliography of recent papers on lower bounds for discriminants of number fields and related topics is presented. Some of the main methods, results, and open problems are discussed.

Bibliographie

1 W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN-Polish Scientific Publishers Warsaw (1974). MR 50# 268. (Very complete references for work before 1973.) MR 347767 | Zbl 0276.12002

2 L.C. Washington, Introduction to Cyclotomic Fields, Springer. 1982. MR 85g: 11001. MR 718674 | Zbl 0484.12001

3 J. Martinet, Méthodes géométriques dans la recherche des petits discriminants. pp. 147-179, Séminaire Théorie des Nombres, Paris, 1983-84, C. Goldstein éd., Birkhäuser Boston, 1985. MR 88h:11083. MR 902831 | Zbl 0567.12009

1 H.M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. math. 23 (1974), 135-152. MR 49 # 7218. MR 342472 | Zbl 0278.12005

2 H.M. Stark, The analytic theory of algebraic numbers, Bull. Am. Math. Soc. 81 (1975), 961-972. MR 56 # 2961. MR 444611 | Zbl 0329.12010

3 A.M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. math. 29 (1975), 275-286. MR 51 # 12788. MR 376613 | Zbl 0306.12005

4 A.M. Odlyzko, Lower bounds. for discriminants of number fields, Acta Arith. 29 (1976), 275-297. MR 53 # 5531. MR 401704 | Zbl 0286.12006

5 A.M. Odplyzko, Lower bounds for discriminants of number fields. II. MR 56 # 309. Zbl 0362.12005

6 A.M. Odlyzko, On conductors and discriminants. pp. 377-407, Algebraic Number Fields, (Proc. 1975 Durham Symp.), A. Fröhlich, ed., Academic Press 1977. MR 56 #11961. MR 453701 | Zbl 0362.12006

7 J.-P. Serre, Minorations de discriminants. note of October 1975, published on pp. 240-243 in vol. 3 of Jean-Pierre Serre, Collected Papers, Springer 1986.

8 A.M. Odlyzko, Discriminant bounds. tables dated Nov. 29, 1976 (unpublished). Some of these bounds are included in Ref. B12.

9 G. Poitou, Minorations de discriminants (d'après A.M. Odlyzko), Séminaire Bourbaki. Vol. 1975/76 28ème année, Exp. No. 479, pp. 136-153, Lecture Notes in Math. #567, Springer 1977. MR 55 #7995. Numdam | MR 435033 | Zbl 0359.12010

10 G. Poitou, Sur les petits discriminants, Séminaire Delange-Pisot-Poitou. 18e année: (1976/77), Théorie des nombres, Fasc. 1, Exp. No. 6, 18pp., Secrétariat Math., Paris, 1977. MR 81i:12007. Numdam | MR 551335 | Zbl 0393.12010

11 F. Diaz Y. Diaz, Tables minorant la racine n-ième du discriminant d'un corps de degré n. Publications Mathématiques d'Orsay 80.06. Université de Paris-Sud, Département de Mathématique, Orsay, (1980). 59 pp. MR 82i:12007. (Some of these bounds are included in Ref. B12.) MR 607864 | Zbl 0482.12003

12 J. Martinet, Petits discriminants des corps de nombres. pp. 151-193, Journées Arithmétiques 1980, J.V. Armitage, ed., Cambridge Univ. Press 1982. MR 84g:12009. MR 697261 | Zbl 0491.12005

1 H.W. Lenstra, Euclidean number fields of large degree, Invent. math. 38 (1977), 237-254. MR 55 # 2836. MR 429826 | Zbl 0328.12007

2 J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. math. 44 (1978), 65-73.. MR 57 # 275. MR 460281 | Zbl 0369.12007

3 J. Martinet, Petits discriminants, Ann. Inst. Fourier (Grenoble) 29, no 1 (1979), 159-170. MR 81h:12006. Numdam | MR 526782 | Zbl 0387.12006

4 R. Schoof, Infinite class field towers of quadratic fields, J. reine angew. Math. 372 (1986), 209-220. MR 88a:11121. MR 863524 | Zbl 0589.12011

1 J.M. Masley, Odlyzko bounds and class number problems. pp. 465-474, Algebraic Number Fields (Proc. Durham Symp., 1975), A. Fröhlich, ed., Academic Press 1977. MR 56 # 5493. MR 447178 | Zbl 0365.12007

2 J.M. Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math. 37 (1978), 297-319. MR 80e:12005. Numdam | MR 511747 | Zbl 0428.12003

3 J.M. Masley, Where are number fields with small class numbers ?. pp. 221-242, Number Theory, Carbondale 1979, Lecture Notes in Math. #751, Springer, 1979. MR 81f:12004. MR 564932 | Zbl 0421.12005

4 J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. math. 55 (1979), 37-47. MR 80k:12019. MR 553994 | Zbl 0474.12009

5 J.M. Masley, Class groups of abelian number fields. pp. 475-497, Proc. Queen's Number Theory Conf. 1979, P. Ribenboim ed., Queen's Papers in Pure and Applied Mathematics no. 54, Queen's Univ., 1980, MR 83f:12007. MR 634704 | Zbl 0471.12007

6 J. Martinet, Sur la constante de Lenstra des corps de nombres, Sém. Theorie des Nombres de Bordeaux (1979-1980). Exp. #17, 21 pp., Univ. Bordeaux 1980. MR 83b:12007. MR 604214 | Zbl 0457.12003

7 F.J. Van Der Linden, Class number computations of real abelian number fields, Math. Comp. 39 (1982), 693-707. MR 84e:12005. MR 669662 | Zbl 0505.12010

8 A. Leutbecher and J. Martinet, Lenstra's constant and Euclidean number fields, Astérisque 94 (1982), 87-131. MR 85b:11090. MR 702368 | Zbl 0499.12013

9 A. Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier (Grenoble) 35. no.2 (1985), 83-106. MR 86j:11107. Numdam | MR 786536 | Zbl 0546.12005

10 J. Hoffstein and N. Jochnowitz, On Artin's conjecture and the class number of certain CM fields, Duke Math. J. 59 (1989), 553-563. MR 1016903 | Zbl 0711.11042

11 J. Hoffstein and N. Jochnowitz, On Artin's conjecture and the class number of certain CM fields-II, Duke Math. J. 59 (1989), 565-584. MR 1016903 | Zbl 0711.11042

1 M. Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory 9 (1977), 459-492. MR 57 # 268. MR 460274 | Zbl 0366.12011

2 G. Gras and M.-N. Gras, Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q, Bull. Sci. Math. 101 (2) (1977), 97-129. MR 58 # 586. MR 480423 | Zbl 0359.12007

3 M. Pohst, Eine Regulatorabschätzung, Abh. Math. Sem. Univ. Hamburg 47 (1978), 95-106. MR 58 # 16596. MR 498487 | Zbl 0381.12006

4 R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. math. 62 (1981), 367-380. MR 83g:12008. MR 604833 | Zbl 0456.12003

5 G. Poitou, Le théorème des classes jumelles de R. Zimmert, Sém. de Théorie des Nombres de Bordeaux (1983-1984). Exp. # 5, 4 pp., Univ. Bordeaux 1984, (Listed in MR 86b:11003.) MR 784057 | Zbl 0543.12006

6 J. Oesterlé, Le théorème des classes jumelles de Zimmert et les formules explicites de Weil. pp. 181-197, Sém. Théorie des Nombres, Paris 1983-84, C. Goldstein ed., Birkhäuser Boston, 1985. MR 902832 | Zbl 0569.12004

7 J. Silverman, An inequality connecting the regulator and the discriminant of a number field, J. Number Theory 19 (1984), 437-442. MR 86c:11094. MR 769793 | Zbl 0552.12003

8 T.W. Cusick, Lower bounds for regulators. pp. 63-73 in Number Theory, Noordwijkerhout 1983, H. Jager ed., Lecture Notes in Math. # 1068, Springer 1984. MR 85k:11052. MR 756083 | Zbl 0549.12003

9 A.-M. Bergé and J. Martinet, Sur les minorations géométriques des régulateurs. pp. 23-50, Séminaire Théorie des Nombres, Paris 1987- 88, C. Goldstein ed., Birkhäuser Boston, 1990. MR 1042763 | Zbl 0699.12014

10 E. Friedman, Analytic formulas for regulators of number fields, Invent. math. 98 (1989), 599-622. MR 1022309 | Zbl 0694.12006

11 M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press. (1989). MR 1033013 | Zbl 0685.12001

12 R. Schoof and L.C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), 543-556. MR 929552 | Zbl 0649.12007

13 A.-M. Bergé and J. Martinet, Notions relatives de régulateurs et de hauteurs, Acta Arith. 54 (1989), 155-170. MR 1024424 | Zbl 0642.12011

14 A.-M. Bergé and J. Martinet, Minorations de hauteurs et petits régulateurs relatifs, Sém. Théorie des Nombres Bordeaux (1987-88). Exp.#11, Univ. Bordeaux 1988. Zbl 0699.12013

15 A. Costa and E. Friedman, Ratios of regulators in totally real extensions of number fields. to be published.

16 E. Friedman and N.-P. Skoruppa, Explicit formulas for regulators and ratios of regulators of number fields. manuscript in preparation.

17 T.W. Cusick, The: egulator spectrum of totally real cubic fields. to appear. MR 1139098 | Zbl 0736.11063

1 P. Cartier and Y. Roy, On the enumeration of quintic fields with small discriminants, J. reine angew. Math 268/269 (1974), 213-215. MR 50 # 2119. MR 349626 | Zbl 0285.12001

2 M. Pohst, Berechnung kleiner Diskriminanten total reeller algebraischer Zahlkörper, J. reine angew. Math. 278/279 (1975), 278-300. MR 52 # 8085. MR 387242 | Zbl 0314.12014

3 M. Pohst, The minimum discriminant of seventh degree totally real algebraic number fields. pp. 235-240, Number theory and algebra, H. Zassenhaus ed., Academic Press 1977. MR 57 # 5952. MR 466069 | Zbl 0373.12006

4 J. Liang and H. Zassenhaus, The minimum discriminant of sixth degree totally complex algebraic number field, J. Number Theory 9 (1977), 16-35. MR 55 # 305. MR 427270 | Zbl 0345.12005

5 M. Pohst, On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. Number Theory 14 (1982), 99-117. MR 83g:12009. MR 644904 | Zbl 0478.12005

6 M. Pohst, P. Weiler, and H. Zassenhaus, On effective computation of fundamental units, Math. Comp. 38 (1982), 293-329. MR 83e:12005b. MR 637308 | Zbl 0493.12005

7 D.G. Rish, On algebraic number fields of degree five, Vestnik Moskov. Univ. Ser. I Mat. Mekh. no 2, (1982), 76-80. English translation in Moscow Univ. Math. Bull. 37 (1982), no. 99-103. MR 83g:12006. MR 655408 | Zbl 0512.12009

8 F. Diaz Y. Diaz, Valeurs minima du discriminant des corps de degré 7 ayant une seule place réelle, C.R. Acad. Sc. Paris 296 (1983), 137-139. MR 84i:12004. MR 693185 | Zbl 0527.12007

9 F. Diaz Y. Diaz, Valeurs minima du discriminant pour certains types de corps de degré 7, Ann. Inst. Fourier (Grenoble) 34, no 3 (1984), 29-38. MR 86d:11091. Numdam | MR 762692 | Zbl 0546.12004

10 K. Takeuchi, Totally real algebraic number fields of degree 5 and 6 with small discriminant, Saitama Math. J. 2 (1984), 21-32. MR 86i:11060. MR 769447 | Zbl 0581.12002

11 H.J. Godwin, On quartic fields of signature one with small discriminant. II, Math. Comp. 42 (1984). 707-711. Corrigendum, Math. Comp. 43 (1984), 621. MR 85i:11092a, 11092b. MR 736462 | Zbl 0535.12003

12 F. Diaz Y. Diaz, Petits discriminants des corps de nombres totalement imaginaires de degré 8, J. Number Theory 25 (1987), 34-52. MR 871167 | Zbl 0606.12005

13 S.-H. Kwon and J. Martinet, Sur les corps résolubles de degré premier, J. reine angew. Math. 375/376 (1987), 12-23. MR 88g:11080. MR 882288 | Zbl 0601.12013

14 F. Diaz Y. Diaz, Discriminants minima et petits discriminants des corps de nombres de degré 7 avec cinq places réelles, J. London Math. Soc. 38 (2) (1988), 33-46.. MR 949079 | Zbl 0653.12003

15 J. Buchmann and D. Ford, On the computation of totally real quartic fields of small discriminant, Math. Comp. 52 (1989), 161-174. MR 946599 | Zbl 0668.12001

16 S.-H. Kwon, Sur les discriminants minimaux des corps quaternioniens. preprint 1987.

17 P. Llorente and J. Quer, On totally real cubic fields with discriminant D < 107, Math. Comp. 50 (1988), 581-594. MR 929555 | Zbl 0651.12001

18 J. Buchmann, M. Pohst and J. V. Schmettow, On the computation of unit groups and class groups of totally real quartic fields, Math. Comp. 53 (1989), 387-397. MR 970698 | Zbl 0714.11002

19 A.-M. Bergé, J. Martinet and M. Olivier, The computation of sextic fields with a quadratic subfield. in Math. Comp. to appear. MR 1011438 | Zbl 0709.11056

20 F. Diaz Y. Diaz, Table de corps quintiques totalement réels. Université de Paris-Sud, Département de Mathématiques, Orsay, Report no. 89-14, 35 pp., 1989.

21 M. Pohst, J. Martinet and F. Diaz Y. Diaz, The minimum discriminant of totally real octic fields, J. Number Theory. to appear. Zbl 0719.11079

1 J. Hoffstein, Some results related to minimal discriminants. pp. 185-194, Number Theory, Carbondale 1979, Lecture Notes in Math. # 751, Springer 1979, MR 81d:12005. MR 564928 | Zbl 0418.12002

2 A. Neugebauer, On zeros of zeta functions in low rectangles in the critical strip. (in Polish), Ph.D. Thesis, A. Mickiewicz University, Poznan, Poland, 1985.

3 A. Neugebauer, On the zeros of the Dedekind zeta-function near the real axis, Funct. Approx. Comment. Math. 16 (1988), 165-167. MR 965377 | Zbl 0677.12005

4 A. Neugebauer, Every Dedekind zeta-function has a zero in the rectangle 1/2 ≤ σ ≤ 1, 0 < t < 60,, Discuss. Math.. to appear. Zbl 0592.12010

5 A.M. Odlyzko, Low zeros of Dedekind zeta function. manuscript in preparation.

1 J.-F. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math. 58 (1986), 209-232. MR 87j:11059. Numdam | MR 844410 | Zbl 0607.14012

2 E. Friedman, The zero near 1 of an ideal class zeta function, J. London Math. Soc. 35 (2) (1987). 1-17. MR 88g:11087. MR 871761 | Zbl 0583.12010

3 E. Friedman, Hecke's integral formula, Sém. Théorie des Nombres de Bordeaux (1987-88). Exp. #5, 23 pp., Univ. Bordeaux 1988. Zbl 0697.12010

1 E. Landau, Zur Theorie der Heckeschen Zetafunktionen, welche komplexen Charakteren entsprechen, Math. Zeit. 4 (1919), 152-162.. Reprinted on pp. 176-186 of vol. 7, Edmund Landau: Collected Works, P.T. Bateman, et al., eds., Thales Verlag. JFM 47.0164.01 | MR 1544358

2 E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, 2nd ed., Göttingen (1927). Reprinted by Chelsea, 1949. MR 31002 | Zbl 0041.01103

3 R. Remak, Über die Abschätzung des absoluten Betrages des Regulators eines algebraischen Zahlkörpers nach unten, J. reine angew. Math. 167. (1932), 360-378. JFM 58.0173.04 | Zbl 0003.19801

4 R.P. Boas and M. Kac, Inequalities for Fourier transforms of positive functions, Duke Math. J. 12 (1945), 189-206. MR 6-265. MR 12152 | Zbl 0060.25602

5. A.P. Guinand, A summation formula in the theory of prime numbers, Proc. London Math. Soc. 50 (2) (1948), 107-119. MR 10, 104g. MR 26086 | Zbl 0031.11003

6 A.P. Guinand, Fourier reciprocities and the Riemann zeta- function, Proc. London Math. Soc. 51 (2) (1949), 401-414. MR 11, 162d. MR 31513 | Zbl 0039.11503

7 A. Weil, Sur les "formules explicites" de la théorie des nombres premiers, Comm. Sem. Math. Univ. Lund, tome supplémentaire (1952), 252-265. MR 14, 727e. MR 53152 | Zbl 0049.03205

8 R. Remak, Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers, Compos. Math. 10 (1952), 245-285. MR 14, 952d. Numdam | MR 54641 | Zbl 0047.27202

9 R. Remak, Über algebraische Zahlkörper mit schwachem Einheitsdefekt, Compos. Math. 12 (1954), 35-80. MR 16, 116a. Numdam | MR 63403 | Zbl 0055.26805

10 A. Weil, Sur les formules explicites de la théorie des nombres, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972). 3-18. MR 52 # 345. Reprinted in A. Weil, Oeuvres Scientifiques, vol. 3, pp. 249-264, Springer 1979. MR 379440 | Zbl 0245.12010

11 H.-J. Besenfelder, Die Weilsche "Explizite Formel" und temperierte Distributionen, J. reine angew. Math. 293/294 (1977), 228-257. MR 57 # 254. MR 460260 | Zbl 0354.12007

12 J.-P. Serre. note on p. 710 in vol. 3 of Jean-Pierre Serre, Collected Papers, Springer 1986.

13 H. Cohen and H.W. Lenstra Jr., Heuristics on class groups of number fields. pp. 33-62 in Number Theory, Noordwijkerhout 1983, H. Jager ed., Lecture Notes in Math. # 1068, Springer 1984. MR 85j:11144. MR 756082 | Zbl 0558.12002

14 J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C.R. Acad. Sci. Paris 296 (1983). sér. I, 397-402. MR 85b:14027. Reprinted on pp. 658-663 in vol. 3 of Jean-Pierre Serre, Collected Papers, Springer 1986. MR 703906 | Zbl 0538.14015

15 A.M. Odlyzko and H.J.J. Te Riele, Disproof of the Mertens conjecture, J. reine angew. Math. 357 (1985), 138-160. MR 86m:11070. MR 783538 | Zbl 0544.10047

16 J.-M. Fontaine, Il n'y a pas de variété abélienne sur Z, Invent. math. 81 (1985), 515-538. MR 87g:11073. MR 807070 | Zbl 0612.14043

17 H. Cohen and J. Martinet, Etude heuristique des groupes de classes des corps de nombres, J. reine angew. Math. 404 (1990), 39-76. MR 1037430 | Zbl 0699.12016

18 A. Borel and G. Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ: Math. I.H.E.S. 69 (1989), 119-171. Numdam | MR 1019963 | Zbl 0707.11032