A language is literally idempotent in case that if and only if , for each , . Varieties of literally idempotent languages result naturally by taking all literally idempotent languages in a classical (positive) variety or by considering a certain closure operator on classes of languages. We initiate the systematic study of such varieties. Various classes of literally idempotent languages can be characterized using syntactic methods. A starting example is the class of all finite unions of where are subsets of a given alphabet .
Keywords: literally idempotent languages, varieties of languages
@article{ITA_2008__42_3_583_0,
author = {Kl{\'\i}ma, Ond\v{r}ej and Pol\'ak, Libor},
title = {On varieties of literally idempotent languages},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {583--598},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {3},
doi = {10.1051/ita:2008020},
mrnumber = {2434036},
zbl = {1151.68032},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2008020/}
}
TY - JOUR AU - Klíma, Ondřej AU - Polák, Libor TI - On varieties of literally idempotent languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 583 EP - 598 VL - 42 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2008020/ DO - 10.1051/ita:2008020 LA - en ID - ITA_2008__42_3_583_0 ER -
%0 Journal Article %A Klíma, Ondřej %A Polák, Libor %T On varieties of literally idempotent languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 583-598 %V 42 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2008020/ %R 10.1051/ita:2008020 %G en %F ITA_2008__42_3_583_0
Klíma, Ondřej; Polák, Libor. On varieties of literally idempotent languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 3, pp. 583-598. doi: 10.1051/ita:2008020
[1] , Finite Semigroups and Universal Algebra. World Scientific (1994). | Zbl | MR
[2] , and , On the expressive power of temporal logic. J. Comput. System Sci. 46 (1993) 271-294. | Zbl | MR
[3] , Extended temporal logic on finite words and wreath product of monoids with distinguished generators, Proc. DLT 02. Lect. Notes Comput. Sci. 2450 (2003) 43-58. | Zbl | MR
[4] and , Temporal logic with cyclic counting and the degree of aperiodicity of finite automata. Acta Cybernetica 16 (2003) 1-28. | Zbl | MR
[5] and , Regular languages defined by Lindström quantifiers. RAIRO-Theor. Inf. Appl. 37 (2003) 197-242. | Zbl | Numdam
[6] and , The stuttering principle revisited. Acta Informatica 41 (2005) 415-434. | Zbl | MR
[7] , Equationaltion of pseudovarieties of homomorphisms. RAIRO-Theor. Inf. Appl. 37 (2003) 243-254. | Zbl | MR | Numdam
[8] and , Stutter-invariant temporal properties are expressible without the next-time operator. Inform. Process. Lett. 63 (1997) 243-246. | MR
[9] , Varieties of Formal Languages. Plenum (1986). | Zbl | MR
[10] , Syntactic semigroups, Chapter 10 in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer (1997). | MR
[11] , On logical descriptions of recognizable languages, Proc. Latin 2002. Lecture Notes Comput. Sci. 2286 (2002) 528-538. | Zbl | MR
[12] and , Nesting until and since in linear temporal logic. Theor. Comput. Syst. 37 (2003) 111-131. | Zbl | MR
[13] , Regular languages, Chapter 2 in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer (1997). | MR
Cité par Sources :





