In our main result, we establish a formal connection between Lindström quantifiers with respect to regular languages and the double semidirect product of finite monoids with a distinguished set of generators. We use this correspondence to characterize the expressive power of Lindström quantifiers associated with a class of regular languages.
Keywords: regular language, logic, Lindström quantifier, expressive power, semidirect product
@article{ITA_2003__37_3_179_0,
author = {\'Esik, Zolt\'an and Larsen, Kim G.},
title = {Regular languages definable by {Lindstr\"om} quantifiers},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {179--241},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {3},
doi = {10.1051/ita:2003017},
mrnumber = {2021315},
zbl = {1046.20042},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2003017/}
}
TY - JOUR AU - Ésik, Zoltán AU - Larsen, Kim G. TI - Regular languages definable by Lindström quantifiers JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 179 EP - 241 VL - 37 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2003017/ DO - 10.1051/ita:2003017 LA - en ID - ITA_2003__37_3_179_0 ER -
%0 Journal Article %A Ésik, Zoltán %A Larsen, Kim G. %T Regular languages definable by Lindström quantifiers %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 179-241 %V 37 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2003017/ %R 10.1051/ita:2003017 %G en %F ITA_2003__37_3_179_0
Ésik, Zoltán; Larsen, Kim G. Regular languages definable by Lindström quantifiers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 3, pp. 179-241. doi: 10.1051/ita:2003017
[1] (ed.), Algebraic Theory of Machines, Languages, and Semigroups. With a major contribution by K. Krohn and J.L. Rhodes, Academic Press (1968). | Zbl | MR
[2] ,, and, Regular languages in NC. J. Comput. System Sci. 44 (1992) 478-499. | Zbl
[3] , and: On uniformity within . J. Comput. System Sci. 41 (1990) 274-306. | Zbl
[4] , and, Modular temporal logic, in: 14th Annual IEEE Symposium on Logic in Computer Science, Trento (1999). IEEE Computer Society, 344-351.
[5] and, Monadic logic of order over naturals has no finite base. J. Logic and Comput. (to appear). | Zbl | MR
[6] , Weak second order logic and finite automata. Zeit. Math. Logik Grund. Math. 6 (1960) 66-92. | Zbl
[7] and, Lindström quantifiers and leaf language definability. Int. J. Found. Comput. Sci. 9 (1998) 277-294.
[8] , and, On the expressive power of temporal logic. J. Comput. System Sci. 46 (1993) 271-294. | Zbl
[9] and, Critical classes for the -product. Theoret. Comput. Sci. 61 (1988) 17-24. | Zbl
[10] and, Finite Model Theory. 2nd ed., Springer (1999). | Zbl | MR
[11] , Automata, Languages, and Machines. vol. A and B, Academic Press (1974, 1976). | Zbl | MR
[12] , Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98 (1961) 21-51. | Zbl
[13] , Results on homomorphic realization of automata by -products. Theoret. Comput. Sci. 87 (1991) 229-249. | Zbl
[14] and, Temporal logic with cyclic counting and the degree of aperiodicity of finite automata. Acta Cybernet. 16 (2003) 1-28. | Zbl
[15] and, A generalization of the Büchi-Elgot-Trakhtenbrot theorem, in: Computer Science Logic, 15th International Workshop, CSL (2001), Paris (2001), LNCS 2142, Springer, 355-368. | Zbl
[16] , Descriptive Complexity. Graduate Texts in Computer Science, Springer-Verlag, New York (1999). | Zbl | MR
[17] and, Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines. Trans. Amer. Math. Soc. 116 (1965) 450-464. | Zbl
[18] , and, The descriptive complexity approach to LOGCFL. J. Comput. System Sci. 62 (2001) 629-652. | Zbl
[19] , First order predicate logic with generalized quantifiers. Theoria 32 (1966) 186-195.
[20] ,, and, The many faces of a translation, in: Automata, Languages and Programming, 27th International Colloquium, ICALP'00, LNCS 1853, 890-901. | Zbl
[21] and, A property of finite simple non-abelian groups, Proc. Amer. Math. Soc. 16 (1965) 552-554. | Zbl
[22] and, Counter-Free Automata. MIT Press (1971). | Zbl | MR
[23] and, Finite automata with generalized acceptance criteria, in: Automata, Languages and Programming, 26th International Colloquium, ICALP'99, Prague, LNCS 1644, Springer, 605-614. | Zbl
[24] , Varieties of Formal Languages. Plenum (1986). | Zbl | MR
[25] , Logic, semigroups and automata on words, Ann. Math. Artif. Intell. 16 (1996) 343-384. | Zbl
[26] , The temporal logic of programs, in: 18th IEEE Symp. Foundations of Computer Science, Providence (1977) 46-57.
[27] , Undecidability, automata, and pseudo-varieties of finite semigroups, Int. J. Algebra and Comput. 9 (1999) 455-473. | Zbl
[28] and, The kernel of monoid morphisms, J. Pure Appl. Algebra 62 (1989) 227-268. | Zbl
[29] , On finite monoids having only trivial subgroup. Inf. and Control 8 (1965) 190-194. | Zbl
[30] , Families of recognizable sets corresponding to certain varieties of finite monoids. J. Pure Appl. Algebra 15 (1979) 305-318. | Zbl
[31] , Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser (1994). | Zbl | MR
[32] , On logical descriptions of regular languages, in: LATIN 2002, LNCS 2286, Springer (2002) 528-538. | Zbl
[33] and, Regular languages defined with a bounded number of variables, in: STACS 2001, LNCS 2010, Springer (2001) 555-562.
[34] , and, Regular languages defined with generalized quantifiers, Automata, languages and programming (Tampere, 1988), Lecture Notes in Comput. Sci. 317, Springer, Berlin (1988) 561-575. | Zbl
[35] , and, Regular languages defined with generalized quantifiers. Inf. and Comput. 118 (1995) 289-301. | Zbl
[36] , Classification of finite monoids: The language approach. Theoret. Comput. Sci. 14 (1981) 195-208. | Zbl
[37] and, Temporal logic and semidirect products: An effective characterization of the until hierarchy, in: 37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington. IEEE Computer Society (1996) 256-263.
[38] , Automata on infinite objects, in Handbook of Theoretical Computer Science. Vol. B, Elsevier, Amsterdam (1990) 133-191. | Zbl
[39] , Languages, automata, and logic, in: Handbook of Formal Languages. Vol. 3, Springer (1997) 389-455.
[40] , Finite automata and logic of monadic predicates, Dokl. Akad. Nauk SSSR 140 (1961) 326-329. | Zbl
[41] (ed.), Generalized Quantifiers and Computation, LNCS 1754, Springer (1997). | MR
Cité par Sources :






