Word and tree codes are studied in a common framework, that of polypodes which are sets endowed with a substitution like operation. Many examples are given and basic properties are examined. The code decomposition theorem is valid in this general setup.
@article{ITA_2002__36_1_5_0,
author = {Bozapalidis, Symeon and Louscou-Bozapalidou, Olympia},
title = {Polypodic codes},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {5--28},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {1},
doi = {10.1051/ita:2002002},
zbl = {1013.68085},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2002002/}
}
TY - JOUR AU - Bozapalidis, Symeon AU - Louscou-Bozapalidou, Olympia TI - Polypodic codes JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 5 EP - 28 VL - 36 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2002002/ DO - 10.1051/ita:2002002 LA - en ID - ITA_2002__36_1_5_0 ER -
%0 Journal Article %A Bozapalidis, Symeon %A Louscou-Bozapalidou, Olympia %T Polypodic codes %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 5-28 %V 36 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2002002/ %R 10.1051/ita:2002002 %G en %F ITA_2002__36_1_5_0
Bozapalidis, Symeon; Louscou-Bozapalidou, Olympia. Polypodic codes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 1, pp. 5-28. doi: 10.1051/ita:2002002
[1] , An Introduction to Polypodic Structures. J. Universal Comput. Sci. 5 (1999) 508-520. | Zbl | MR
[2] and, Theory of Codes. Academic Press (1985). | Zbl | MR
[3] , Graph rewriting: An Algebraic and Logic Approach, edited by J. van Leeuwen. Elsevier, Amsterdam, Handb. Theoret. Comput. Sci. B (1990) 193-242. | Zbl | MR
[4] and, Tree Languages, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, New York, Handb. Formal Lang. 3, pp. 1-68. | MR
[5] , Algebraic Theory of m-automata, edited by Z. Kohavi and A. Paz. Academic Press, New York, Theory of Machines and Computation (1971) 275-286.
[6] , Tree Automata and tree Grammars. DAIMI FN-10 (1975).
[7] , Super Associative Systems and Logical Functions. Math. Ann. 157 (1964) 278-295. | Zbl | MR | EuDML
[8] and, Tree Codes and Equations1998) 119-132.
[9] , Binary Tree Codes. Tree Automata and Languages. Elsevier Science Publishers B.V. North Holland (1992) 1-19. | Zbl | MR
Cité par Sources :






