Polypodic codes
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 1, pp. 5-28.

Word and tree codes are studied in a common framework, that of polypodes which are sets endowed with a substitution like operation. Many examples are given and basic properties are examined. The code decomposition theorem is valid in this general setup.

DOI : https://doi.org/10.1051/ita:2002002
Classification : 68R05,  05C90
Mots clés : code, polypode, trees
@article{ITA_2002__36_1_5_0,
     author = {Bozapalidis, Symeon and Louscou-Bozapalidou, Olympia},
     title = {Polypodic codes},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {5--28},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {1},
     year = {2002},
     doi = {10.1051/ita:2002002},
     zbl = {1013.68085},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2002002/}
}
TY  - JOUR
AU  - Bozapalidis, Symeon
AU  - Louscou-Bozapalidou, Olympia
TI  - Polypodic codes
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2002
DA  - 2002///
SP  - 5
EP  - 28
VL  - 36
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2002002/
UR  - https://zbmath.org/?q=an%3A1013.68085
UR  - https://doi.org/10.1051/ita:2002002
DO  - 10.1051/ita:2002002
LA  - en
ID  - ITA_2002__36_1_5_0
ER  - 
Bozapalidis, Symeon; Louscou-Bozapalidou, Olympia. Polypodic codes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 1, pp. 5-28. doi : 10.1051/ita:2002002. http://www.numdam.org/articles/10.1051/ita:2002002/

[1] S. Bozapalidis, An Introduction to Polypodic Structures. J. Universal Comput. Sci. 5 (1999) 508-520. | MR 1722381 | Zbl 0964.08006

[2] J. Berstel and D. Perrin, Theory of Codes. Academic Press (1985). | MR 797069 | Zbl 0587.68066

[3] B. Courcelle, Graph rewriting: An Algebraic and Logic Approach, edited by J. van Leeuwen. Elsevier, Amsterdam, Handb. Theoret. Comput. Sci. B (1990) 193-242. | MR 1127190 | Zbl 0900.68282

[4] F. Gécseg and M. Steinby, Tree Languages, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, New York, Handb. Formal Lang. 3, pp. 1-68. | MR 1470018

[5] V. Give'On, Algebraic Theory of m-automata, edited by Z. Kohavi and A. Paz. Academic Press, New York, Theory of Machines and Computation (1971) 275-286.

[6] J. Engelfriet, Tree Automata and tree Grammars. DAIMI FN-10 (1975).

[7] K. Menger, Super Associative Systems and Logical Functions. Math. Ann. 157 (1964) 278-295. | EuDML 161241 | MR 177928 | Zbl 0126.03601

[8] S. Mantaci and A. Restivo, Tree Codes and Equations1998) 119-132.

[9] M. Nivat, Binary Tree Codes. Tree Automata and Languages. Elsevier Science Publishers B.V. North Holland (1992) 1-19. | MR 1196729 | Zbl 0798.68083

Cité par Sources :