@article{GEA_1975-1976__1__A6_0,
author = {Andrews, George E.},
title = {Partition ideals of order 1, the {Rogers-Ramanujan} identities and computers},
journal = {Groupe d'\'etude d'alg\`ebre},
note = {talk:6},
pages = {1--8},
year = {1975-1976},
publisher = {Secr\'etariat math\'ematique},
volume = {1},
zbl = {0383.10008},
language = {en},
url = {https://www.numdam.org/item/GEA_1975-1976__1__A6_0/}
}
TY - JOUR AU - Andrews, George E. TI - Partition ideals of order 1, the Rogers-Ramanujan identities and computers JO - Groupe d'étude d'algèbre N1 - talk:6 PY - 1975-1976 SP - 1 EP - 8 VL - 1 PB - Secrétariat mathématique UR - https://www.numdam.org/item/GEA_1975-1976__1__A6_0/ LA - en ID - GEA_1975-1976__1__A6_0 ER -
Andrews, George E. Partition ideals of order 1, the Rogers-Ramanujan identities and computers. Groupe d'étude d'algèbre, Tome 1 (1975-1976), Exposé no. 6, 8 p.. https://www.numdam.org/item/GEA_1975-1976__1__A6_0/
[1] . - Partition theorems related to the Rogers-Ramanujan identities J. combinatorial Theory, t. 2, 1967, p. 422-430. | Zbl | MR
[2] . - Some new partition theorems, J. combinatorial Theory, t. 2, 1967, p. 431-436. | Zbl | MR
[3] . - On Schur's second partition theorem, Glasgow math. J., t. 8, 1967, p. 127-132. | Zbl | MR
[4] . - Some new partition theorems II, J. combinatorial Theory, t. 7, 1969, p. 262-263. | Zbl | MR
[5] . - Number theory. - Philadelphia, W. B. Saunders Company, 1971. | Zbl | MR
[6] . - Partition identities, Adv. in Math., t. 9, 1972, p. 10-51. | Zbl | MR
[7] . - A general theory of identities of the Rogers-Ramanujan type, Bull. Amer. math. Soc., t. 80, 1974, p. 1033-1052. | Zbl | MR
[8] and . - Enumeration of plane partitions, J. combinatorial Theory, Series A, t. 13, 1972, p. 40-54. | Zbl | MR
[9] . - Lattice theory. Revised edition. - Providence, American mathematical Society, 1967 (American mathematical Society Colloquium Publications, 25). | Zbl
[10] . - A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. t. 83, 1961, p. 393-399. | Zbl | MR






