Following the -convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for lagrangians with quadratic behavior is established.
Keywords: discrete dynamics, variational integrators, gamma-convergence
@article{COCV_2004__10_4_656_0,
author = {Maggi, Francesco and Morini, Massimiliano},
title = {A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {656--665},
year = {2004},
publisher = {EDP Sciences},
volume = {10},
number = {4},
doi = {10.1051/cocv:2004025},
mrnumber = {2111086},
zbl = {1099.37064},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2004025/}
}
TY - JOUR AU - Maggi, Francesco AU - Morini, Massimiliano TI - A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 656 EP - 665 VL - 10 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004025/ DO - 10.1051/cocv:2004025 LA - en ID - COCV_2004__10_4_656_0 ER -
%0 Journal Article %A Maggi, Francesco %A Morini, Massimiliano %T A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 656-665 %V 10 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004025/ %R 10.1051/cocv:2004025 %G en %F COCV_2004__10_4_656_0
Maggi, Francesco; Morini, Massimiliano. A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 656-665. doi: 10.1051/cocv:2004025
[1] , Teoremi di semicontinuitá nel Calcolo delle Variazioni. Istituto Nazionale di Alta Matematica (1968-1969).
[2] , On lower semicontinuity of integral functionals. I. SIAM J. Control Optim. 15 (1977) 521-538. | Zbl | MR
[3] and, Discrete Mechanics and variational integrators. Acta Numerica 10 (2001) 357-514. | Zbl | MR
[4] and, On the -convergence of discrete dynamics and variational integrators. J. Nonlinear Sci. 14 (2004) 279-296. | Zbl | MR
Cité par Sources :






