On complexity and motion planning for co-rank one sub-riemannian metrics
ESAIM: Control, Optimisation and Calculus of Variations, Volume 10 (2004) no. 4, pp. 634-655.

In this paper, we study the motion planning problem for generic sub-riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [10, 11]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C case, we study some non-generic generalizations in the analytic case.

DOI: 10.1051/cocv:2004024
Classification: 34H05, 49J15, 53C17
Keywords: motion planning problem, metric complexity, normal forms, asymptotic optimal synthesis
@article{COCV_2004__10_4_634_0,
     author = {Romero-Mel\'endez, Cutberto and Gauthier, Jean Paul and Monroy-P\'erez, Felipe},
     title = {On complexity and motion planning for co-rank one sub-riemannian metrics},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {634--655},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {4},
     year = {2004},
     doi = {10.1051/cocv:2004024},
     mrnumber = {2111085},
     zbl = {1101.93030},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2004024/}
}
TY  - JOUR
AU  - Romero-Meléndez, Cutberto
AU  - Gauthier, Jean Paul
AU  - Monroy-Pérez, Felipe
TI  - On complexity and motion planning for co-rank one sub-riemannian metrics
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 634
EP  - 655
VL  - 10
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2004024/
DO  - 10.1051/cocv:2004024
LA  - en
ID  - COCV_2004__10_4_634_0
ER  - 
%0 Journal Article
%A Romero-Meléndez, Cutberto
%A Gauthier, Jean Paul
%A Monroy-Pérez, Felipe
%T On complexity and motion planning for co-rank one sub-riemannian metrics
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 634-655
%V 10
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2004024/
%R 10.1051/cocv:2004024
%G en
%F COCV_2004__10_4_634_0
Romero-Meléndez, Cutberto; Gauthier, Jean Paul; Monroy-Pérez, Felipe. On complexity and motion planning for co-rank one sub-riemannian metrics. ESAIM: Control, Optimisation and Calculus of Variations, Volume 10 (2004) no. 4, pp. 634-655. doi : 10.1051/cocv:2004024. http://www.numdam.org/articles/10.1051/cocv:2004024/

[1] R. Abraham and J. Robbin, Transversal mappings and flows. W.A. Benjamin, Inc. (1967). | MR | Zbl

[2] A. Agrachev, El- A. Chakir1996) 29-76, Canad. Math. Soc. Conf. Proc. 25, Amer. Math. Soc., Providence, RI (1998). | MR | Zbl

[3] A. Agrachev and J.P. Gauthier, Sub-Riemannian Metrics and Isoperimetric Problems in the Contact case, L.S. Pontriaguine, 90th Birthday Commemoration, Contemporary Mathematics 64 (1999) 5-48 (Russian). English version: J. Math. Sci. 103, 639-663. | MR | Zbl

[4] M.W. Hirsch, Differential Topology. Springer-Verlag (1976). | MR | Zbl

[5] El- A. Chakir 2 (1996) 359-421. | MR | Zbl

[6] G. Charlot, Quasi-Contact sub-Riemannian Metrics 74 (2002) 217-263. | MR | Zbl

[7] K. Goldberg, D. Halperin, J.C. Latombe and R. Wilson, Algorithmic foundations of robotics. AK Peters, Wellesley, Mass. (1995). | MR | Zbl

[8] Mc Pherson Goreski, Stratified Morse Theory. Springer-Verlag, New York (1988). | MR | Zbl

[9] M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian geometry. A. Bellaiche, J.J. Risler Eds., Birkhauser (1996) 79-323. | MR | Zbl

[10] F. Jean, Complexity of nonholonomic motion planning. Internat. J. Control 74 (2001) 776-782. | MR | Zbl

[11] F. Jean, Entropy and Complexity of a Path in Sub-Riemannian Geometry. ESAIM: COCV 9 (2003) 485-508. | Numdam | MR | Zbl

[12] F. Jean and E. Falbel, Measures and transverse paths in Sub-Riemannian Geometry. J. Anal. Math. 91 (2003) 231-246. | MR | Zbl

[13] T. Kato, Perturbation theory for linear operators. Springer-Verlag (1966) 120-122. | MR | Zbl

[14] I. Kupka, Géometrie sous-Riemannienne1995-96) 1-30. | Numdam

[15] G. Lafferiere and H. Sussmann, Motion Planning for controllable systems without drift, in Proc. of the 1991 IEEE Int. Conf. on Robotics and Automation (1991).

Cited by Sources: