-convergence techniques and relaxation results of constrained energy functionals are used to identify the limiting energy as the thickness approaches zero of a ferromagnetic thin structure , , whose energy is given by
Keywords: $\Gamma $-limit, thin films, micromagnetics, relaxation of constrained functionals
@article{COCV_2001__6__489_0,
author = {Alicandro, Roberto and Leone, Chiara},
title = {3D-2D asymptotic analysis for micromagnetic thin films},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {489--498},
year = {2001},
publisher = {EDP Sciences},
volume = {6},
mrnumber = {1836053},
zbl = {0989.35009},
language = {en},
url = {https://www.numdam.org/item/COCV_2001__6__489_0/}
}
TY - JOUR AU - Alicandro, Roberto AU - Leone, Chiara TI - 3D-2D asymptotic analysis for micromagnetic thin films JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 489 EP - 498 VL - 6 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_2001__6__489_0/ LA - en ID - COCV_2001__6__489_0 ER -
Alicandro, Roberto; Leone, Chiara. 3D-2D asymptotic analysis for micromagnetic thin films. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 489-498. https://www.numdam.org/item/COCV_2001__6__489_0/
[1] and, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998). | Zbl | MR
[2] and, Brittle thin films, Preprint CNA-CMU. Pittsburgh (1999). | Zbl | MR
[3] , and, 3D-2D asymptotic analysis for inhomogeneous thin films, Preprint CNA-CMU. Pittsburgh (1999). | Zbl | MR
[4] , Micromagnetics. John Wiley and Sons, New York (1963).
[5] and, Convex analysis and measurable multifunctions. Springer-Verlag, New York, Lecture Notes in Math. 580 (1977). | Zbl | MR
[6] , Direct methods in Calculus of Variations. Springer-Verlag, Berlin (1989). | Zbl | MR
[7] ,, and, Manifold constrained variational problems. Calc. Var. 9 (1999) 185-206. | Zbl | MR
[8] , An Introduction to -convergence. Birkhäuser, Boston (1993). | Zbl | MR
[9] and, 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173-202. | Zbl | MR
[10] and, On the inadequacy of the scaling of linear elasticity for 3D-2D asymptotic in a nonlinear setting, Preprint CNA-CMU. Pittsburgh (1999). | Zbl | MR
[11] and, Quasi-convex integrands and lower semicontinuity in . SIAM J. Math. Anal. 23 (1992) 1081-1098. | Zbl | MR
[12] and, Micromagnetics of very thin films. Proc. Roy. Soc. Lond. Ser. A 453 (1997) 213-223.
[13] , Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. | Zbl | MR
[14] , Multiple integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966). | Zbl | MR






