Local small time controllability and attainability of a set for nonlinear control system
ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 499-516.

In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set is a hyperplane.

Classification : 93B05,  93B03,  93C05,  93C10,  49J53
Mots clés : attainability, controlability, local variations, polynomial control, linear controls
@article{COCV_2001__6__499_0,
     author = {Krastanov, Mikhail and Quincampoix, Marc},
     title = {Local small time controllability and attainability of a set for nonlinear control system},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {499--516},
     publisher = {EDP-Sciences},
     volume = {6},
     year = {2001},
     zbl = {1082.93003},
     mrnumber = {1849413},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2001__6__499_0/}
}
TY  - JOUR
AU  - Krastanov, Mikhail
AU  - Quincampoix, Marc
TI  - Local small time controllability and attainability of a set for nonlinear control system
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2001
DA  - 2001///
SP  - 499
EP  - 516
VL  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_2001__6__499_0/
UR  - https://zbmath.org/?q=an%3A1082.93003
UR  - https://www.ams.org/mathscinet-getitem?mr=1849413
LA  - en
ID  - COCV_2001__6__499_0
ER  - 
Krastanov, Mikhail; Quincampoix, Marc. Local small time controllability and attainability of a set for nonlinear control system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 499-516. http://www.numdam.org/item/COCV_2001__6__499_0/

[1] A. Agrachev and R. Gamkrelidze, The exponential representation of flows and the chronological calculus. Math. USSR Sbornik 35 (1978) 727-785. | Zbl 0429.34044

[2] A. Bacciotti and G. Stefani, Self-accessibility of a set with respect to a multivalued field. JOTA 31 (1980) 535-552. | MR 600203 | Zbl 0417.49048

[3] R. Bianchini and G. Stefani, Time optimal problem and time optimal map. Rend. Sem. Mat. Univ. Politec. Torino 48 (1990) 401-429. | MR 1199082 | Zbl 0776.49003

[4] J.M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19 (1969) 277-304. | EuDML 73982 | Numdam | MR 262881 | Zbl 0176.09703

[5] P. Brunovsky, Local controllability of odd systems. Banach Center Publications,Warsaw, Poland 1 (1974) 39-45. | EuDML 208561 | Zbl 0344.93016

[6] P. Cardaliaguet, M. Quincampoix and P. Saint Pierre, Minimal time for constrained nonlinear control problems without controllability. Appl. Math. Optim. 36 (1997) 21-42. | MR 1446790 | Zbl 0884.49002

[7] K. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1957) 163-178. | MR 85251 | Zbl 0077.25301

[8] F.H. Clarke and P.R. Wolenski, Control of systems to sets and their interiors. JOTA 88 (1996) 3-23. | MR 1367031 | Zbl 0843.93009

[9] M. Fliess, Fonctionnelles causales nonlinéaires et indéterminées non commutatives. Bull. Soc. Math. France 109 (1981) 3-40. | EuDML 87402 | Numdam | MR 613847 | Zbl 0476.93021

[10] H. Frankowska, Local controllability of control systems with feedback. JOTA 60 (1989) 277-296. | MR 984985 | Zbl 0633.93013

[11] H. Hermes, Lie algebras of vector fields and local approximation of attainable sets. SIAM J. Control Optim. 16 (1978) 715-727. | MR 493664 | Zbl 0388.49025

[12] R. Hirshorn, Strong controllability of nonlinear systems. SIAM J. Control Optim. 16 (1989) 264-275. | MR 826516 | Zbl 0594.93012

[13] V. Jurdjevic and I. Kupka, Polynomial Control Systems. Math. Ann. 272 (1985) 361-368. | MR 799667 | Zbl 0554.93033

[14] A. Krener, The high order maximal principle and its applications to singular extremals. SIAM J. Control Optim. 15 (1977) 256-293. | MR 433288 | Zbl 0354.49008

[15] H. Kunita, On the controllability of nonlinear systems with application to polynomial systems. Appl. Math. Optim. 5 (1979) 89-99. | MR 533613 | Zbl 0406.93011

[16] G. Lebourg, Valeur moyenne pour gradient généralisé. C. R. Acad. Sci. Paris Sér. I Math. 281 (1975) 795-797. | MR 388097 | Zbl 0317.46034

[17] P. Soravia, Hölder Continuity of the Minimum-Time Function for C 1 -Manifold Targets. JOTA 75 (1992) 2. | MR 1191596 | Zbl 0792.93058

[18] H. Sussmann, A sufficient condition for local controllability. SIAM J. Control Optim. 16 (1978) 790-802. | MR 527718 | Zbl 0391.93004

[19] H. Sussmann, Lie brackets and local controllability - A sufficient condition for scalar-input control systems. SIAM J. Control Optim. 21 (1983) 683-713. | Zbl 0523.49026

[20] H. Sussmann, A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158-194. | MR 872457 | Zbl 0629.93012

[21] V. Veliov, On the controllability of control constrained systems. Mathematica Balkanica (N.S.) 2 (1988) 2-3, 147-155. | MR 981273 | Zbl 0681.93009

[22] V. Veliov and M. Krastanov, Controllability of piece-wise linear systems. Systems Control Lett. 7 (1986) 335-341. | MR 859019 | Zbl 0609.93006

[23] V. Veliov, Attractiveness and invariance: The case of uncertain measurement, edited by Kurzhanski and Veliov, Modeling Techniques for uncertain Systems. PSCT 18, Birkhauser (1994). | MR 1287663 | Zbl 0833.34015

[24] V. Veliov, On the Lipschitz continuity of the value function in optimal control. J. Optim. Theory Appl. 94 (1997) 335-361. | MR 1460669 | Zbl 0901.49022