Bonnard, B.; Launay, G.
Time minimal control of batch reactors
ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998) , p. 407-467
Zbl 0914.93043 | MR 1658682 | 2 citations dans Numdam
URL stable : http://www.numdam.org/item?id=COCV_1998__3__407_0

Bibliographie

[1] A. Agrachev: Symplectic methods in optimization and control. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. Zbl 0965.93034

[2] B. Bonnard: Rapport préliminaire sur la conduite optimale des réacteurs chimiques de type batch, Prépublication de l'Université de Bourgogne, Laboratoire de Topologie, n° 58, 1995.

[3] B. Bonnard, J. De Morant: Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. Contr. Opt., 33, 1995, 1279-1311. MR 1348110 | Zbl 0882.49024

[4] B. Bonnard, I. Kupka: Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum mathematicum, 5, 1993, 111-159. MR 1205250 | Zbl 0779.49025

[5] B. Bonnard, G. Launay, M. Pelletier: Classification générique de synthèses temps minimales avec cible de codimension un et applications. Ann. IHP (an), 14, 1997, 55-102. Numdam | MR 1437189 | Zbl 0891.49012

[6] I. Ekeland: Discontinuité des champs hamiltoniens et existence de solutions optimales en calcul des variations, Pub. IHES, 47, 1977, 1-32. Numdam | MR 493584 | Zbl 0447.49015

[7] M. Feinberg: Chemical reaction network structure and stability of complex isothermal reactions, Chemical Engineering Sciences, 42, 1987, 2229-2268.

[8] H. Grauert, K. Fritzche: Several complex variables, Springer Verlag, New York, 1976. MR 414912 | Zbl 0381.32001

[9] W. Harmon Ray: Advanced Process Control, Butterworths Reprint Series in chemical engineering, 1989.

[10] H. Hermes: Lie algebras of vector fields and local approximation of attainable sets, SIAM J. Control Opt., 16, 1978, 715-727. MR 493664 | Zbl 0388.49025

[11] B. Jakubczyk: Critical Hamiltonians and feedback invariants. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. MR 1493015 | Zbl 0925.93136

[12] I. Kupka: Geometric theory of extremals in optimal control problems, I. The fold and Maxwell cases, Trans. Amer. Math. Soc., 299, 1987, 225-243. MR 869409 | Zbl 0606.49016

[13] I. Kupka: Optimalité des extrémales ordinaires, Communication personnelle.

[14] G. Launay, M. Pelletier: The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two, J. Dyn. Contr. Syst., 3, 1997, 165-204. MR 1449981 | Zbl 0951.49027

[15] L. Pontriaguine et al.: Théorie mathématique des processus optimaux, Mir, Moscou, 1974. MR 358482 | Zbl 0289.49002

[16] H.J. Sussmann: The structure of time-optimal trajectories for single-input systems in the plane: the C∞ non singular case, SIAM J. Control Opt., 25, 1987, 433-465. MR 877071 | Zbl 0664.93034

[17] H.J. Sussmann: Regular synthesis for time-optimal control for single-input real analytic systems in the plane, SIAM J. Control Opt., 25, 1987, 1145-1162. MR 905037 | Zbl 0696.93026