@article{COCV_1998__3__407_0, author = {Bonnard, B. and Launay, G.}, title = {Time minimal control of batch reactors}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {407--467}, publisher = {EDP-Sciences}, volume = {3}, year = {1998}, mrnumber = {1658682}, zbl = {0914.93043}, language = {en}, url = {http://www.numdam.org/item/COCV_1998__3__407_0/} }
Bonnard, B.; Launay, G. Time minimal control of batch reactors. ESAIM: Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 407-467. http://www.numdam.org/item/COCV_1998__3__407_0/
[1] Symplectic methods in optimization and control. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. | Zbl
:[2] Rapport préliminaire sur la conduite optimale des réacteurs chimiques de type batch, Prépublication de l'Université de Bourgogne, Laboratoire de Topologie, n° 58, 1995.
:[3] Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. Contr. Opt., 33, 1995, 1279-1311. | MR | Zbl
, :[4] Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum mathematicum, 5, 1993, 111-159. | MR | Zbl
, :[5] Classification générique de synthèses temps minimales avec cible de codimension un et applications. Ann. IHP (an), 14, 1997, 55-102. | Numdam | MR | Zbl
, , :[6] Discontinuité des champs hamiltoniens et existence de solutions optimales en calcul des variations, Pub. IHES, 47, 1977, 1-32. | Numdam | MR | Zbl
:[7] Chemical reaction network structure and stability of complex isothermal reactions, Chemical Engineering Sciences, 42, 1987, 2229-2268.
:[8] Several complex variables, Springer Verlag, New York, 1976. | MR | Zbl
, :[9] Advanced Process Control, Butterworths Reprint Series in chemical engineering, 1989.
:[10] Lie algebras of vector fields and local approximation of attainable sets, SIAM J. Control Opt., 16, 1978, 715-727. | MR | Zbl
:[11] Critical Hamiltonians and feedback invariants. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. | MR | Zbl
:[12] Geometric theory of extremals in optimal control problems, I. The fold and Maxwell cases, Trans. Amer. Math. Soc., 299, 1987, 225-243. | MR | Zbl
:[13] Optimalité des extrémales ordinaires, Communication personnelle.
:[14] The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two, J. Dyn. Contr. Syst., 3, 1997, 165-204. | MR | Zbl
, :[15] Théorie mathématique des processus optimaux, Mir, Moscou, 1974. | MR | Zbl
et al.:[16] The structure of time-optimal trajectories for single-input systems in the plane: the C∞ non singular case, SIAM J. Control Opt., 25, 1987, 433-465. | MR | Zbl
:[17] Regular synthesis for time-optimal control for single-input real analytic systems in the plane, SIAM J. Control Opt., 25, 1987, 1145-1162. | MR | Zbl
: