@article{CM_1994__94_2_129_0,
author = {Hilgert, Joachim and Neeb, Karl-Hermann and Plank, Werner},
title = {Symplectic convexity theorems and coadjoint orbits},
journal = {Compositio Mathematica},
pages = {129--180},
year = {1994},
publisher = {Kluwer Academic Publishers},
volume = {94},
number = {2},
mrnumber = {1302314},
zbl = {0819.22006},
language = {en},
url = {https://www.numdam.org/item/CM_1994__94_2_129_0/}
}
TY - JOUR AU - Hilgert, Joachim AU - Neeb, Karl-Hermann AU - Plank, Werner TI - Symplectic convexity theorems and coadjoint orbits JO - Compositio Mathematica PY - 1994 SP - 129 EP - 180 VL - 94 IS - 2 PB - Kluwer Academic Publishers UR - https://www.numdam.org/item/CM_1994__94_2_129_0/ LA - en ID - CM_1994__94_2_129_0 ER -
Hilgert, Joachim; Neeb, Karl-Hermann; Plank, Werner. Symplectic convexity theorems and coadjoint orbits. Compositio Mathematica, Tome 94 (1994) no. 2, pp. 129-180. https://www.numdam.org/item/CM_1994__94_2_129_0/
[AL92] , and , La convexité de l'application moment d'un groupe de Lie, J. Funct. Anal. 105 (1992), 256-300 | Zbl | MR
[At82] , Convexity and commuting hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15 | Zbl | MR
[vdB86] , A Convexity Theorem for Semisimple Symmetric Spaces, Pacific Journal of Math. 124(1986), 21-55 | Zbl | MR
[Bou71 ] , "Topologie Générale", Chap. 1-10, Hermann, Paris, 1971 | Zbl | MR
[Bou82] , Groupes et algèbres de Lie, Chap. 9, Masson, Paris, 1982 | Zbl
[BJ73] , and , "Einführung in die Differentialtopologie ", Springer Verlag, Berlin, Heidelberg, 1973 | Zbl | MR
[CDM88] , and , Geometrie du moment, in Sem. Sud-Rhodanien 1988 | MR
[tD91] , "Topologie", de Gruyter, Berlin, New York, 1991 | Zbl | MR
[Dui83] , Convexity and tightness for restrictions of hamiltonian functions to fixed point sets of antisymplectic involution, Trans AMS.275 (1983), 417-429. | Zbl | MR
[GS82] , and , Convexity properties of the moment mapping I, Invent. Math. 67 (1982), 491-513 | Zbl | MR
[GS84] , and , Symplectic techniques in physics, Cambridge Univ. Press, 1984 | Zbl | MR
[Hel78] , Differential geometry, Lie groups, and symmetric spaces, Acad. Press, London, 1978 | Zbl | MR
[Hil91 ] , Vorlesung über symplektische Geometrie, Erlangen, 1991
[HHL89] , , and , Lie Groups, Convex Cones, and Semigroups, Oxford University Press, 1989 | Zbl | MR
[HiNe93a] , and , Lie semigroups and their applications, Lecture Notes in Math. 1552, Springer Verlag, 1993 | Zbl | MR
[HiNe93b] , and , Non-linear Convexity Theorems and Poisson Lie groups, in preparation
[Ki84], Convexity properties of the moment mapping III, Invent. Math.77 (1984), 547-552 | Zbl | MR
[Ko73] , On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. 6(1973), 413-455 | Zbl | MR | Numdam
[Le80] , Konvexe Mengen, Springer Verlag, Heidelberg, 1980 | Zbl | MR
[LM87] , and , Symplectic geometry and analytical mechanics, Reidel, Dordrecht, 1987 | Zbl
[Lo69] , "Symmetric Spaces I : General Theory", Benjamin, New York, Amsterdam, 1969 | Zbl | MR
[LR91 ] , and , On the nonlinear convexity theorem of Kostant, Journal of the AMS 4(1991), 349-363 | Zbl | MR
[Me81] , Hamiltonian systems with a discrete symmetry, J. Diff. Eq. 41(1981), 228-238 | Zbl | MR
[Ne92] , A convexity theorem for semisimple symmetric spaces, Pac. J. Math., 162 (1994), 305-349. | Zbl | MR
[Ne93a] , Invariant subsemigroups of Lie groups, Mem. of the AMS 499, 1993 | Zbl | MR
[Ne93b] , On closedness and simple connectedness of coadjoint orbits, Manuscripta Math., 82 (1994), 51-56. | Zbl | MR
[Ne93c] , Kähler structures and convexity properties of coadjoint orbits, Forum Math., to appear | Zbl | MR
[Ne93d] , Holomorphic representation theory II, Acta Math., to appear. | Zbl | MR
[Ne93e] , On the convexity of the moment mapping for a unitary highest weight representation, Journal of Funct. Anal., to appear | Zbl
[Ne93f] , Locally polyhedral sets, unpublished note
[Ola90] , Causal Symmetric Spaces, Mathematica Gottingensis 15, Preprint, 1990
[Pa84] , Determination of invariant convex cones in simple Lie algebras, Arkif för Mat.21(1984), 217-228 | Zbl | MR
[Pl92] , Konvexität in der symplektischen Geometrie, Diplomarbeit, Erlangen, 1992






