Symplectic convexity theorems and coadjoint orbits
Compositio Mathematica, Volume 94 (1994) no. 2, pp. 129-180.
@article{CM_1994__94_2_129_0,
     author = {Hilgert, Joachim and Neeb, Karl-Hermann and Plank, Werner},
     title = {Symplectic convexity theorems and coadjoint orbits},
     journal = {Compositio Mathematica},
     pages = {129--180},
     publisher = {Kluwer Academic Publishers},
     volume = {94},
     number = {2},
     year = {1994},
     zbl = {0819.22006},
     mrnumber = {1302314},
     language = {en},
     url = {http://www.numdam.org/item/CM_1994__94_2_129_0/}
}
TY  - JOUR
AU  - Hilgert, Joachim
AU  - Neeb, Karl-Hermann
AU  - Plank, Werner
TI  - Symplectic convexity theorems and coadjoint orbits
JO  - Compositio Mathematica
PY  - 1994
DA  - 1994///
SP  - 129
EP  - 180
VL  - 94
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1994__94_2_129_0/
UR  - https://zbmath.org/?q=an%3A0819.22006
UR  - https://www.ams.org/mathscinet-getitem?mr=1302314
LA  - en
ID  - CM_1994__94_2_129_0
ER  - 
%0 Journal Article
%A Hilgert, Joachim
%A Neeb, Karl-Hermann
%A Plank, Werner
%T Symplectic convexity theorems and coadjoint orbits
%J Compositio Mathematica
%D 1994
%P 129-180
%V 94
%N 2
%I Kluwer Academic Publishers
%G en
%F CM_1994__94_2_129_0
Hilgert, Joachim; Neeb, Karl-Hermann; Plank, Werner. Symplectic convexity theorems and coadjoint orbits. Compositio Mathematica, Volume 94 (1994) no. 2, pp. 129-180. http://www.numdam.org/item/CM_1994__94_2_129_0/

[AL92] Arnal, D., and J. Ludwig, La convexité de l'application moment d'un groupe de Lie, J. Funct. Anal. 105 (1992), 256-300 | MR | Zbl

[At82] Atiyah, M., Convexity and commuting hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15 | MR | Zbl

[vdB86] Van Den Ban, E., A Convexity Theorem for Semisimple Symmetric Spaces, Pacific Journal of Math. 124(1986), 21-55 | MR | Zbl

[Bou71 ] Bourbaki, N., "Topologie Générale", Chap. 1-10, Hermann, Paris, 1971 | MR | Zbl

[Bou82] Bourbaki, N., Groupes et algèbres de Lie, Chap. 9, Masson, Paris, 1982 | Zbl

[BJ73] Bröcker, T., and K. Jänich, "Einführung in die Differentialtopologie ", Springer Verlag, Berlin, Heidelberg, 1973 | MR | Zbl

[CDM88] Condevaux, M., P. Dazord and P. Molino, Geometrie du moment, in Sem. Sud-Rhodanien 1988 | MR

[tD91] Tom Dieck, T., "Topologie", de Gruyter, Berlin, New York, 1991 | MR | Zbl

[Dui83] Duistermaat, J., Convexity and tightness for restrictions of hamiltonian functions to fixed point sets of antisymplectic involution, Trans AMS.275 (1983), 417-429. | MR | Zbl

[GS82] Guillemin, V., and S. Sternberg, Convexity properties of the moment mapping I, Invent. Math. 67 (1982), 491-513 | MR | Zbl

[GS84] Guillemin, V., and S. Sternberg, Symplectic techniques in physics, Cambridge Univ. Press, 1984 | MR | Zbl

[Hel78] Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Acad. Press, London, 1978 | MR | Zbl

[Hil91 ] Hilgert, J., Vorlesung über symplektische Geometrie, Erlangen, 1991

[HHL89] Hilgert, J., K.H. Hofmann, and J.D. Lawson, Lie Groups, Convex Cones, and Semigroups, Oxford University Press, 1989 | MR | Zbl

[HiNe93a] Hilgert, J., and K.-H. Neeb, Lie semigroups and their applications, Lecture Notes in Math. 1552, Springer Verlag, 1993 | MR | Zbl

[HiNe93b] Hilgert, J., and K.-H. Neeb, Non-linear Convexity Theorems and Poisson Lie groups, in preparation

[Ki84]Kirwan, F., Convexity properties of the moment mapping III, Invent. Math.77 (1984), 547-552 | MR | Zbl

[Ko73] Kostant, B., On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. 6(1973), 413-455 | Numdam | MR | Zbl

[Le80] Leichtweiß, K., Konvexe Mengen, Springer Verlag, Heidelberg, 1980 | MR | Zbl

[LM87] Libermann, P., and C. Marle, Symplectic geometry and analytical mechanics, Reidel, Dordrecht, 1987 | Zbl

[Lo69] Loos, O., "Symmetric Spaces I : General Theory", Benjamin, New York, Amsterdam, 1969 | MR | Zbl

[LR91 ] Lu, J., and T. Ratiu, On the nonlinear convexity theorem of Kostant, Journal of the AMS 4(1991), 349-363 | MR | Zbl

[Me81] Meyer, K.R., Hamiltonian systems with a discrete symmetry, J. Diff. Eq. 41(1981), 228-238 | MR | Zbl

[Ne92] Neeb, K.-H., A convexity theorem for semisimple symmetric spaces, Pac. J. Math., 162 (1994), 305-349. | MR | Zbl

[Ne93a] Neeb, K.-H., Invariant subsemigroups of Lie groups, Mem. of the AMS 499, 1993 | MR | Zbl

[Ne93b] Neeb, K.-H., On closedness and simple connectedness of coadjoint orbits, Manuscripta Math., 82 (1994), 51-56. | MR | Zbl

[Ne93c] Neeb, K.-H., Kähler structures and convexity properties of coadjoint orbits, Forum Math., to appear | MR | Zbl

[Ne93d] Neeb, K.-H., Holomorphic representation theory II, Acta Math., to appear. | MR | Zbl

[Ne93e] Neeb, K.-H., On the convexity of the moment mapping for a unitary highest weight representation, Journal of Funct. Anal., to appear | Zbl

[Ne93f] Neeb, K.-H., Locally polyhedral sets, unpublished note

[Ola90] Olafsson, G., Causal Symmetric Spaces, Mathematica Gottingensis 15, Preprint, 1990

[Pa84] Paneitz, S., Determination of invariant convex cones in simple Lie algebras, Arkif för Mat.21(1984), 217-228 | MR | Zbl

[Pl92] Plank, W., Konvexität in der symplektischen Geometrie, Diplomarbeit, Erlangen, 1992