@article{CM_1994__94_2_129_0, author = {Hilgert, Joachim and Neeb, Karl-Hermann and Plank, Werner}, title = {Symplectic convexity theorems and coadjoint orbits}, journal = {Compositio Mathematica}, pages = {129--180}, publisher = {Kluwer Academic Publishers}, volume = {94}, number = {2}, year = {1994}, mrnumber = {1302314}, zbl = {0819.22006}, language = {en}, url = {http://www.numdam.org/item/CM_1994__94_2_129_0/} }
TY - JOUR AU - Hilgert, Joachim AU - Neeb, Karl-Hermann AU - Plank, Werner TI - Symplectic convexity theorems and coadjoint orbits JO - Compositio Mathematica PY - 1994 SP - 129 EP - 180 VL - 94 IS - 2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1994__94_2_129_0/ LA - en ID - CM_1994__94_2_129_0 ER -
Hilgert, Joachim; Neeb, Karl-Hermann; Plank, Werner. Symplectic convexity theorems and coadjoint orbits. Compositio Mathematica, Volume 94 (1994) no. 2, pp. 129-180. http://www.numdam.org/item/CM_1994__94_2_129_0/
[AL92] La convexité de l'application moment d'un groupe de Lie, J. Funct. Anal. 105 (1992), 256-300 | MR | Zbl
, and ,[At82] Convexity and commuting hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15 | MR | Zbl
,[vdB86] A Convexity Theorem for Semisimple Symmetric Spaces, Pacific Journal of Math. 124(1986), 21-55 | MR | Zbl
,[Bou71 ] "Topologie Générale", Chap. 1-10, Hermann, Paris, 1971 | MR | Zbl
,[Bou82] Groupes et algèbres de Lie, Chap. 9, Masson, Paris, 1982 | Zbl
,[BJ73] Einführung in die Differentialtopologie ", Springer Verlag, Berlin, Heidelberg, 1973 | MR | Zbl
, and , "[CDM88] Geometrie du moment, in Sem. Sud-Rhodanien 1988 | MR
, and ,[tD91] Topologie", de Gruyter, Berlin, New York, 1991 | MR | Zbl
, "[Dui83] Convexity and tightness for restrictions of hamiltonian functions to fixed point sets of antisymplectic involution, Trans AMS.275 (1983), 417-429. | MR | Zbl
,[GS82] Convexity properties of the moment mapping I, Invent. Math. 67 (1982), 491-513 | MR | Zbl
, and ,[GS84] Symplectic techniques in physics, Cambridge Univ. Press, 1984 | MR | Zbl
, and ,[Hel78] Differential geometry, Lie groups, and symmetric spaces, Acad. Press, London, 1978 | MR | Zbl
,[Hil91 ] Vorlesung über symplektische Geometrie, Erlangen, 1991
,[HHL89] Lie Groups, Convex Cones, and Semigroups, Oxford University Press, 1989 | MR | Zbl
, , and ,[HiNe93a] Lie semigroups and their applications, Lecture Notes in Math. 1552, Springer Verlag, 1993 | MR | Zbl
, and ,[HiNe93b] Non-linear Convexity Theorems and Poisson Lie groups, in preparation
, and ,[Ki84]Convexity properties of the moment mapping III, Invent. Math.77 (1984), 547-552 | MR | Zbl
,[Ko73] On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. 6(1973), 413-455 | Numdam | MR | Zbl
,[Le80] Konvexe Mengen, Springer Verlag, Heidelberg, 1980 | MR | Zbl
,[LM87] Symplectic geometry and analytical mechanics, Reidel, Dordrecht, 1987 | Zbl
, and ,[Lo69] Symmetric Spaces I : General Theory", Benjamin, New York, Amsterdam, 1969 | MR | Zbl
, "[LR91 ] On the nonlinear convexity theorem of Kostant, Journal of the AMS 4(1991), 349-363 | MR | Zbl
, and ,[Me81] Hamiltonian systems with a discrete symmetry, J. Diff. Eq. 41(1981), 228-238 | MR | Zbl
,[Ne92] A convexity theorem for semisimple symmetric spaces, Pac. J. Math., 162 (1994), 305-349. | MR | Zbl
,[Ne93a] Invariant subsemigroups of Lie groups, Mem. of the AMS 499, 1993 | MR | Zbl
,[Ne93b] On closedness and simple connectedness of coadjoint orbits, Manuscripta Math., 82 (1994), 51-56. | MR | Zbl
,[Ne93c] Kähler structures and convexity properties of coadjoint orbits, Forum Math., to appear | MR | Zbl
,[Ne93d] Holomorphic representation theory II, Acta Math., to appear. | MR | Zbl
,[Ne93e] On the convexity of the moment mapping for a unitary highest weight representation, Journal of Funct. Anal., to appear | Zbl
,[Ne93f] Locally polyhedral sets, unpublished note
,[Ola90] Causal Symmetric Spaces, Mathematica Gottingensis 15, Preprint, 1990
,[Pa84] Determination of invariant convex cones in simple Lie algebras, Arkif för Mat.21(1984), 217-228 | MR | Zbl
,[Pl92] Konvexität in der symplektischen Geometrie, Diplomarbeit, Erlangen, 1992
,