Search and download archives of mathematical journals

 
 
  Table of contents for this issue | Previous article | Next article
Kurihara, Masato
Some remarks on conjectures about cyclotomic fields and $K$-groups of Z. Compositio Mathematica, 81 no. 2 (1992), p. 223-236
Full text djvu | pdf | Reviews MR 1145807 | Zbl 0747.11055 | 4 citations in Numdam

stable URL: http://www.numdam.org/item?id=CM_1992__81_2_223_0

Bibliography

[1] Beilinson, A.A.: Polylogarithm and cyclotomic elements, preprint (1990).
[2] Bloch, S. and Kato, K.: L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift Vol I, Progress in Math. Vol. 86, Birkhäuser (1990), 333-400.  MR 1086888 |  Zbl 0768.14001
[3] Coleman, R.F.: Anderson-Ihara theory: Gauss sums and circular units, in Algebraic Number Theory (in honor of K. Iwasawa), Adv. Studies in Pure Math. 17 (1989), 55-72.  MR 1097609 |  Zbl 0733.14012
[4] Deligne, P.: Le groupe fondamental de la droite projective moins trois points, in Galois groups over Q, Publ. MSRI, no. 16, Springer-Verlag (1989), 79-298.  MR 1012168 |  Zbl 0742.14022
[5] Dwyer, W.G. and Friedlander, E.M.: Algebraic and etale K-theory, Trans, AMS 292(1) (1985), 247-280.  MR 805962 |  Zbl 0581.14012
[6] Greenberg, R.: On the Jacobian variety of some algebraic curves, Comp. Math. 42 (1981), 345-359.
Numdam |  MR 607375 |  Zbl 0475.14026
[7] Ihara, Y.: Profinite braid groups, Galois representations and complex multiplications, Ann. Math. 123 (1986), 43-106.  MR 825839 |  Zbl 0595.12003
[8] Ihara, Y., Kaneko, M., and Yukinari, A.: On some properties of the universal power series for Jacobi sums, Adv. Studies in Pure Math. 12 (1987), 65-86.  MR 948237 |  Zbl 0642.12012
[9] Iwasawa, K.: A class number formula for cyclotomic fields, Ann. Math. 76 (1962), 171-179.  MR 154862 |  Zbl 0125.02003
[10] Kolyvagin, V.A.: Euler systems, to appear in The Grothendieck Festschrift Vol. II.  MR 1106906 |  Zbl 0742.14017
[11] Lee, R. and Szczarba, R.H.: On the torsion in K4(Z) and K5(Z) with Addendum by C. Soulé, Duke Math. 45 (1978), 101-132.
Article |  Zbl 0385.18009
[12] Lichtenbaum, S.: Values of zeta functions, étale cohomology, and algebraic K-theory, in Lect. Notes in Math. 342, Springer-Verlag (1973), 489-501.  MR 406981 |  Zbl 0284.12005
[13] Quillen, D.: Letter from Quillen to Milnor on Im(π iO→πsi→KiZ), July 26, 1972, in Lecture Notes in Math. 551, Springer-Verlag (1976), 182-188.  Zbl 0351.55003
[14] Rubin, K.: The main conjecture: Appendix to Cyclotomic Fields (Combined Second Edition) by S. Lang, Graduate Texts in Math. Vol. 121, Springer-Verlag (1990).  MR 1029028 |  Zbl 0704.11038
[15] Soulé, C.: K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-295.  MR 553999 |  Zbl 0437.12008
[16] Soulé, C.: On higher p-adic regulators, in Lecture Notes in Math. 854, Springer-Verlag (1981), 372-401.  MR 618313 |  Zbl 0488.12008
[17] Soulé, C.: Éléments cyclotomiques en K-thérie, Astérisque 147-148 (1987), 225-257.  MR 891430 |  Zbl 0632.12014
[18] Suslin, A.A.: Stability in Algebraic K-theory, in Lect. Notes in Math. 966, Springer-Verlag (1982), 304-333.  MR 689381 |  Zbl 0498.18008
[19] Tate, J.: Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257-274.  MR 429837 |  Zbl 0359.12011
[20] Vandiver, H.S.: A property of cyclotomic integers and its relation to Fermat's last theorem, Ann. Math. 26 (1924-25), 217-232.  JFM 51.0136.01
[21] Washington, L.C.: Introduction to Cyclotomic Fields, Graduate Texts in Math. Vol. 83, Springer-Verlag (1980).  MR 1421575 |  Zbl 0484.12001
[22] Wiles, A.: The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990), 493-540.  MR 1053488 |  Zbl 0719.11071
Copyright Cellule MathDoc 2014 | Credit | Site Map