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0. Introduction

In this article, we study the relations between some conjectures about the
cyclotomic fields, and the K-groups and the etale cohomology groups of Z.

For an odd prime number p, let Q(03BCp) be the field of primitive pth roots of
unity, and 0394 = Gal(Q(03BCp)/Q) its Galois group. We denote by 03C9 ~ 0394^ =

Hom(A, Z p) the Teichmüller character. We decompose the p-Sylow subgroup A
of the ideal class group of Q(up) into the co’-eigenspaces A[k] for characters
03C9k ~ 0394^

It is conjectured that (i) A[i] for even i is zero (by Kummer-Vandiver) and that (ii)
A[j] for odd j is cyclic (by Iwasawa cf. [9], and (ii) is also a consequence of (i)). It
can be shown that (i) is equivalent to H2et(Z[1/p], Zp(r)) = 0 for odd r, and (ii) is to
the cyclicity of H2et(Z[1/p], Z p(r)) for even r, respectively (cf. Corollary 1.5). Let
K*(Z) be Quillen’s K-groups of Z. In this article, we show that K2r-2(Z)
contains a direct summand isomorphic to H2(Z[1/p], Zp(r)) for r  2 (Proposi-
tion 2.1). So, we know that K4n(Z){p} = 0 implies (i) and that the cyclicity of
K4n+2(z){p} implies (ii). Here, K*(Z){p} means the p-Sylow subgroup of the K-
group of Z. More precisely, see Section 3. For example, by K4(Z) = 0 modulo 2
and 3 torsions (Lee and Szczarba’s theorem [11]), we have A[p-3]=0, and the
cyclicity of A[3] by duality. We shall give in Section 4 some results (on the
Jacobian of Fermat curves, on the Galois representation to the pro-p braid
group in Ihara [7], and on the first case of Fermat’s problem) which are deduced
from A[p-3]=0 and the cyclicity of A[3].
As an appendix, in Section 5 we show that the notion of Euler system due to

Kolyvagin works well for the study of H2(Z[1/p], Zp(r)) for odd r  3, by using
the cyclotomic elements of Deligne-Soulé [4], [16], [17].
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Notation

For an abelian group A and an integer n, the kernel (resp. cokernel) of the
multiplication by n is denoted by nA (resp. A/n), and the torsion subgroup of A is
denoted by Ators . For a number field F, its integer ring is denoted by OF . For a
ring R and a sheaf M on (Spec R),,t, the etale cohomology group H*et(Spec R, M)
is written as H*(R, M). For an etale sheaf M and an integer r, M(r) means the
Tate twist. For a prime number p, ordp: Q x -+ Z is the normalized additive
valuation at p.

1. Ideal class groups and cohomology groups

Let p be an odd prime number and 03BCp the group of pth roots of unity. In this
article, we always assume that F is a number field such that there is only one

prime of F(03BCp) over p. A typical and principal example is F = Q.
We are interested in the cohomology groups

because of the relation with ideal class groups, which will be shown in this

section.

PROPOSITION 1.1. Let F be as above. The sequence

which comes from the localization sequence of the etale cohomology groups, is

exact for all n  1 and r E Z. Here, OF is the integer ring of F and K( v) is the residue

field at v.

Let 0 = Gal(F(03BCp)/F) and (J) be a Zp-valued character of A such that 03B603C9(03C3) = 03B603C3
for all 03C3 ~ 0394 and all 03B6 ~ 03BCp. Let AF be the p-Sylow subgroup of the group
H1(OF[03BCp. 1/p], Gm) ~ (~vp Z)/F . For an integer k E Z we denote by A[k]F the
(J)k-eigenspace of AF. Since d = [F(03BCp): F] is prime to p, we have

Hence, by Kummer sequence, we have
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Since d = # 0394 is prime to p, Hq(R, Z/p(r))0394 = Hq(OF[1/p] Z/p(r)) for all q. After
tensoring Z/p( - k), taking A-invariants of both sides of the above isomorphism
(1), we obtain Lemma 1.2.
We shall prove Proposition 1.1. The problem is only the surjectivity of the last

map

Let M/F(03BCp) be the maximal unramified abelian extension. Since M/F(J1.p) and
F(J1.pn)/ F(J1.p) are linearly disjoint, the natural map ~ #03BA(v)-1(modpn) Z ~ AF is

surjective by Cébotarev density. Hence, by Lemma 1.2, the composite

is surjective. By the surjectivity of (2) and induction on n

we get the surjectivity of 4Jn.

COROLLARY 1.3. For r  2, we have isomorphisms

where H*cont(F, Zp(r)) is the continuous cochain cohomology.
Proof. By the localization sequences, we have a diagram of exact sequences
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Here we use H2(OF[1/p], Zp(r)) is a torsion group [16]. Hence,

is exact. On the other hand, Proposition 1.1 implies an isomorphism

by the localization sequence. Thus, we have

The second isomorphism is due to [19] Proposition (2.2).

REMARK 1.4. If F is totally real, as a consequence of Iwasawa’s main

conjecture proved by Wiles, we know

for even integers r  2 where ’F is Dedekind’s zeta function ([22] Th. 1.6).

A remark in the case F = Q. Since the unique prime over p of Q(flp) is principal,

So AQ in Lemma 1.2 is the p-Sylow subgroup of the ideal class group of

Q(pp). We simply write A[k] for A[k]Q, which is the (ùk-eigenspace of AQ =
Pic(Z[Jlp]) Q Zp. From Lemma 1.2, we easily obtain

In fact, since

Using H2(Z[1/p], Zp(r)) is a finite group [16], we obtain this corollary from
Lemma 1.2.

2. Relation with K-groups

Let K*(OF) be the K-group of the integer ring of F, and for r  2

be the Chern character which is defined as the composite of the natural maps
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[5]. This is known to be surjective by [5] and conjectured by Quillen to be
bijective [12] p.495.

PROPOSITION 2.1. Let F be a number field satisfying the condition in Section 1
and r be an integer  2. Then, ch: K2r- 2(OF) ~ H2(OF[1/p], Zp(r)) is split
surjective.

Consider the localization sequence of the etale K-theory

Since

and

by Proposition 1.1 the image of qJn is H2(OF[1/p], Z/pn(r)) in

Ket2r - 2(OF[1/p], Z/pn) (cf. [5] Prop. 5.2). Hence, the canonical homomorphisms
from K-theory to etale K-theory and the localization sequences give the

diagram of exact sequences

By [5] section 8, an is surjective and 03B2n is bijective. Hence, 03B3n induces an

isomorphism between the image of 03B4n and H2(OF[1/p], Z/pn(r)). This also shows
that 03B3n is split surjective. Taking the projective limits

ch = lim 03B3n induces an isomorphism between the direct summand lim Image l5n

COROLLARY 2.2. For 2  r  p, the homology group
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contains a direct summand isomorphic to

For 2  r  p, the Chern character coincides modulo Zp with the Chern class
in [15], which is defined as a composite

where Hu is the Hurewitz homomorphism. Hence,

is also split surjective. The isomorphism (3) is due to the stability by Suslin [18].

3. Conjectures about Kq(Z) and the ideal class groups of cyclotomic fields

In the rest of the paper, we consider the case F = Q.
Let 03B6(s) be Riemann’s zeta function. For a positive even integer k, we write

where Nk, Dk are positive integers and (Nk, Dk) = 1. If we use the Bernoulli

numbers, ( - 1 )k/2 + 1Bk/k = Nk/Dk. It is known that Dk = 03A0pnp + 1 where p runs
through prime numbers such that k is divisible by p - 1, and np = ordp(k). Prime
divisors of Nk are irregular primes.
Concerning the structures of the K-groups Kq(Z),

More precisely,

CONJECTURE 3.2. Up to 2-torsion groups, for

REMARK 3.3. 1 heard from the referee that a more precise conjecture including
2-torsion subgroups, was given independently by S. A. Mitchell. We also remark
that (2) and (4) are no other than Quillen’s conjecture K2r-1(Z) 0 Zp ~
H1(Z[1/p], Z p(r)) for an odd prime p.

Conjecture 3.1 for q = 4n + 2 and Conjecture 3.2 (3) are almost equivalent.
Precisely,
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PROPOSITION 3.4. Assume n  0 and p|N2n+2. If the p-Sylow subgroup of
K4n + 2(Z) is cyclic, it is isomorphic to Zp/N2n+2Zp·

Proof. Note that by Iwasawa’s main conjecture, we have ordp(# H2(Z[1/p],
Z p(2n + 2))) = Ordp(N2n + 2) (cf. Remark 1.4). Hence, if K4n + 2(Z) O Zp is cyclic, by
Proposition 2.1 we must have K4n + 2(Z) 0 Zp ~ H2(Z[1/p], Zp(2n + 2))) ~
ZP/N2n+2ZP-

As in Section 1, we denote by A[k] the wk-eigenspace of the p-Sylow subgroup
of the ideal class group of Q(J1p) (a): Teichmüller character). It is easy to see that
A[0]=A[1]=0. Concerning A [k] there are famous conjectures.

CONJECTURE 3.5 (Kummer-Vandiver). For an even integer i, A[i] = 0.

CONJECTURE 3.6. For an odd integer j such that j  1(mod p -1), AU] is

isomorphic to Zp/L(O, 03C9-j)Zp where L(s, 03C9-j) is Dirichlet’s L-function.

If these conjectures are true, the theory of the cyclotomic fields, for example,
Iwasawa theory becomes very simple (cf. [9]). It is well known that Conjecture
3.5 for i implies Conjecture 3.6 for j such that i + j - 1(mod p -1). We shall give
a proof of this fact using Tate-Poitou’s duality. By Lemma 1.2, A[i] = 0 implies
H2(Z[1/p], Z/p(1- i)) = 0. Hence,

by Tate-Poitou’s duality. Since H’(Qp, Z/p(i)) ~ Z/p, we have

So, considering the Euler-Poincaré characteristic, we get

This shows that A[j] is cyclic where j = 1 - i again by Lemma 1.2. On the other
hand, from Iwasawa’s main conjecture proved by Mazur and Wiles, we know

ordp # A[j]=ordpL(0,03C9-j). Thus, A[i] = 0 implies Conjecture 3.6 for j = 1 - i.

PROPOSITION 3.7. Conjecture 3.2 (1) implies Conjectures 3.5 and 3.6. More
precisely, Conjecture 3.2 (1) for n implies Conjecture 3.5 for i ~ - 2n(mod p -1)
and Conjecture 3.6 for j ~ 1 + 2n(mod p -1).

In fact, if there are no p-torsions in K4n(Z), H2(Z[1/p], Zp(2n + 1 )) = 0 by
Proposition 2.1. Hence, A[-2n]=0 by Corollary 1.5. By the duality explained
above, we have the cyclicity of A[1 + 2n].
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COROLLARY 3.8. For an odd prime p, we have

In fact, by [11], K4(Z) = 0 modulo 2 and 3-torsions. Now, we may assume
p e 3 because 3 is a regular prime. For the last isomorphism, the cyclicity of A[3]
implies that of H2(Z[1/p], Zp(k)) for k ~ p - 3(mod p-1) and k &#x3E; 0 by Corol-
lary 1.5, and the order of H2(Z[1/p], Zp(k)) is known from Remark 1.4.

By the same method, we obtain

PROPOSITION 3.9. Conjecture 3.2 (3) for n implies Conjecture 3.6 for
j ~ -1- 2n(mod p -1).

REMARK 3.10. In order to prove Propositions 3.7, 3.8, 3.9, we only need
Lemma 1.2 and the surjectivity of K2r - 2(Z) ~ H2(Z[1/p], Z/p(r)) proved by
Soulé [15], and we do not need Proposition 2.1.

REMARK 3.11. If we assume Quillen’s conjecture

the converse is also true, namely Conjectures 3.5 and 3.6 imply Conjectures 3.2
(1) and (3).

REMARK 3.12. Let G* be the stable homotopy groups of the spheres. Quillen
showed that the image in K4n + 3(Z) of the J-homomorphism

is a direct summand and cyclic of order Dk up to 2-torsion [13]. One could also
notice that cyclic groups of order the numerator of Bernoulli numbers appear in
the work of Adams on the J-group. If a subgroup of K4n + 2(Z) of order N2n + 2
was produced using geometric topology, this would probably be a cyclic group.
Therefore, Quillen’s conjecture would then imply Conjecture 3.2 (3) and
Conjecture 3.6.

4. Applications

In this section, we describe several applications of Corollary 3.8.

(1) Rational points of some abelian varieties. Let p be an odd prime  5 and 03B6p
a primitive pth root of unity. For an integer a such that 1  a  p - 2, let la be
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the Jacobian variety of the curve yp = xa(1 - x). la has the complex multiplication
by Z[03BCp]. Let Ja[03C03] be the subgroup of 03C03-division points of la where 03C0 = 1 - 03B6p.
Greenberg showed that Ja[n3] is Q(03BCp)-rational ([6]Th.l). By A[p-3]=0
(Corollary 3.8) and [6] p. 359, we know that Ja[03C03] is just Q(,up)-rational points
of p-primary torsions.

PROPOSITION 4.1. Let Ja(Q(03BCp))p-tors be the subgroup of Ja(Q(03BCp)) whose
points have p-primary torsions. Then, we have

This is generalized in Proposition 4.4 below.

(2) Galois representation arising from 03C0pro-p1(P1B{0, 1, oo 1). We shall briefly
describe the theory of the representation of GQ = Gal(Q/Q) in [7]. (Concerning
this theory, see also [4].) Let p be an odd prime. Put X = P1B{0, 1, ~}. Then, GQ
acts on 03C01(X) and on its pro-p completion 03C0pro-p1(X) ~ F by conjugation where
57 is the free pro-p group of rank 2. So, we have a representation
GQ ~ Aut 7r(p)(X)/Int = Out 03C0(p)1 ~ Out 57. Ihara defined the pro-p braid group
03A6 = Br d(p)2 ([7] p. 46) which is a subgroup of Out 57, and proved that the image
of the above representation is in it. So we have a homomorphism

We can define a natural filtration (03A6(m))m1 1 on C by using the lower

central series of F ([7] p. 59). We know that cp induces a bijective
Gal(Q(03BCp~)/Q) ~ 03A6/03A6(1) and that 03A6(1) = 03A6(2) = 03A6(3). By A[p - 3] = 0

(Corollary 3.8) and [7] Th. 6, we have

PROPOSITION 4.2. The restriction of cp to GQ(03BCp~)=Gal(Q/Q(03BCp~)) ~ 03A6(3)
induces a surjective GQ(03BCp~) ~ (D(3)/(D(4) - Zp.
REMARK 4.3. The above homomorphism gr3cp: GQ(03BCp~) ~ 0(3)/0(4) is unrami-
fied outside p, and 03A6(3)/03A6(4) is isomorphic to Zp(3) as a G 00 = Gal(Q(03BCp~)/Q)-
module. Hence, gr3cp gives an element of

We know that gr3~ in H1(Z[1/p], Zp(3)) coincides with the cyclotomic element
of Deligne-Soulé c(l) in Section 5 (4) modulo Z’ ([8] Th. B, [3] Th. C). Hence,
the surjectivity of gr3~ corresponds to the fact that the cyclotomic element
generates H1(Z[1/p], Zp(3)). The latter is also deduced from Proposition 5.1
below and H2(Z[1/p], Zp(3)) = 0.

The results in [6] are generalized in [7]. Let n be a positive integer, and a, b, c
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be integers such that 0  a, b, c  pn, a + b + c ~ 0(mod pn), and at least one of
a, b, c is prime to p. We denote by X(a,b,c)n the curve ypn = xa(1 - x)b. We define an
abelian variety A(a,b,c)n as a primitive part of the Jacobian of X(a,b,c)n ([7] p. 76).
Then, by Corollary 3.8 and [7] Th. 6, we have

PROPOSITION 4.4. There is a (03B6apn - 1)(03B6bpn - 1)(03B6cpn -1)(03B6pn -1)th division point
Of Ana,b,c) which is not Q(j1poo)-rational where (pn is a primitive pnth root of unity.
For the relation with Jacobi sums, see [7] Th. 6.

(3) The first case of Fermat’s problem. Let p be an odd prime number.
Vandiver showed in [20] that if there is a nontrivial solution to xp + yp = zp by
integers such that xyz is prime to p, then p2 divides the Bernoulli number
B(p-4)p+1.

Let Lp(s, 03C9-2) be Kubota-Leopoldt’s p-adic L function. Then Kummer’s
congruence (cf. [21] Th. 5.12) implies

So if p2 divides B(p - 4)p + 1, p2 also divides L(0, cv - 3). By Corollary 3.8, we have

PROPOSITION 4.5. If the first case of Fermat’s problem fails, then A[31 has an
element of order p2.

Note that there are many examples of cyclotomic fields such that p2 divides
# Pic Z[03BCp], but there is no known example such that Pic Z[03BCp] has an element
of order p2. Recently, Iwasawa and Fujisaki gave a simple proof of Vandiver’s
result and generalized it (in preparation).

5. Cyclotomic éléments as an Euler system

Let p be an odd prime number, and r an odd number  3. In this section, we
show that the cyclotomic elements of Deligne-Soulé in H1(Z[1/p, PLI, Zp(r)) [4],
[16], [17], give an example of the Euler system by Kolyvagin [10]. In this case,
the group corresponding to the Tate-Shafarevich group for an elliptic curve, is
the group H2(Z[1/p], Zp(r)). As an application of the exact sequence in

Prop. 1.1, using an argument of Kolyvagin [10], we show the finiteness of

H2(Z[1/p], Z p(r» (this was already known by using Borel’s calculation of K-
groups [15], [17]), and evaluate its order (this was also known by using
Iwasawa’s main conjecture [2] Section 6).

Let (( pn) E Z,(I) = lim 03BCpn be a projective system of a primitive pnth root of
unity. For an integer L prime to p and 11 C- PL, we define ’1n by the image in
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Further, we define Deligne-Soulé’s cyclotomic element by

where

is the corestriction map.
Let C be the subgroup of H1(Z[1/p], Zp(r)) (topologically) generated by c(l).

By [1], c( 1 ) comes from the cyclotomic element of Beilinson in the K-group
under the Chern class. Since the Chern class is injective modulo torsion [16] and
the element of Beilinson is not zero in K2r - 1(Z) ~ Q, we have c(l):o 0. This fact
can be also proved by using Iwasawa’s main conjecture [17]. Notice that

H1(Z[1/p], Zp(r)) is a free Zp-module of rank 1. In fact, by [16] its rank

is equal to 1. Further, since r is odd, H’(Z[llp], Z/p(r)) = 0. This implies
H1(Z[1/p], Z p(r)) is torsion free. Therefore, H1(Z[1/p], Zp(r)) ~ Zp, and c(1) ~ 0
implies that C is a subgroup of finite index.

PROPOSITION 5.1. For an odd number r  3, H2(Z[1/p], Zp(r)) is finite, and
we have

REMARK 5.2. This was already proved in [2] (6.8) and (6.9). (The above

inequality is really an equality.) We give here another proof following the

argument of Kolyvagin. (We do not use Iwasawa’s main conjecture for the

proof.)

By definition, c(~) has good properties like a system of cyclotomic units in

[10] and [14]. For example, let ~ ~ 03BCL, 1 a prime not dividing pL, 03B6l a primitive
l th root of unity, and Frob, the Frobenius substitution in Gal(Q(’1)/Q). Then,
CorZ[1/p,~,03BCl]/Z[1/p,~](c(03B6l~)) = (l1 - r Frobl -1)c(~). From now on, we follow the

argument in [14].
Put
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We fix an integer n such that n &#x3E; e. Let P be the set of prime numbers 1 such that
1 == 1(mod p"), and Y the set of positive squarefree integers whose prime divisors
are in P. We suppose that 1 is also in 2. In the following, we consider only c(L)
for L ~ L.

We denote by GL the Galois group of the extension Q(ML)/Q for LE2. For a
prime number l ~ L, take a generator u, of G,, and put Dl = 03A3l-2i=1 i03C3il~Z[Gl],
and DL = 03A0l|L Dl ~Z[GL]. Further, take a primitive l th root of unit y ’1 and
put 03B6L = 03A0l|L 03B6l. We can consider DL(c(’L)) mod pn as an element of

H1(Z[1/pL], Zlp’"(r» as follows. For a cyclotomic field K, we denote by K+ the
maximal real subfield. Let N : Q(03BCpnL)  ~ (Q(03BCpnL)+)  be the norm map. By [ 14]
Lemma 2.1, DLN(1 - 03B6pn03B61/pnL) mod pn in (Q(03BCpnL)+)  IP" is in

So, one can write

We define

Notice that x(L) is equal to DLC(L) in H’ (Q(fiL), Z/pn(r)).
For any Zp-module X, we define a function v on X as follows. For x e X, v(x) is

the maximal integer n such that x = pny for some y ~ X. For example, for Z., v is
the usual additive valuation ordp.
For a prime number l ~ p, let

be the homomorphism which comes from the localization sequence. The

following is a consequence of Prop. 2.4 in [14].

LEMMA 5.3.

where
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is the canonical homomorphism. (Note that 03BA(L) ~ H1(Z[1/pL], Z/pn(r)) by (i).)

Using this lemma and Proposition 1.1, we shall show Proposition 5.1 (cf.
Th. 4.1 in [14]). Suppose H2(Z[1/p], Z/pn(r)) ~ ~1ia Ai where Ai’s are cyclic.
For a prime number 1 E P, we denote by ul the image in H2(Z[1/p], Z/pn(r)) of
03B6~(r - 1)pn under the homomorphism

which comes from the localization sequence. We can choose inductively prime
numbers l1, ..., la such that (i) uli is a generator of Ai, (ii) li ~ P, and that (iii)
v(03C8i03BA(03A01  j  i -1 lj)) = v(03BA(03A01  j  ilj)) by Cébotarev density theorem (cf. Th. 3.1
in [14]). Put Li=03A01  j  ilj, L0 = 1, and ei = v(03BA(Li)). Since H1(Z[1/p], Zp(r)) is a
free Zp-module of rank 1, we have eo = v(03BA(1)) = v(c(1)) = e.

Consider the exact sequence in Proposition 1.1

By Lemma 5.3 and the property (iii),

Since ei = v(03BA(Li))  v(~li03BA(Li)), we have ei - 1  ei. By the definition of v, there is
an element w(Li)~H1(Z[1/pLi], Z/p"(r)) such that 03BA(Li) = peiw(Li). We have

and v(OZW(Li)) = 0 for a prime 1 not dividing pLi. Hence, by the property (i), we
have

This implies 
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