@article{CM_1991__80_2_137_0,
author = {Nishiyama, Kyo},
title = {Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $},
journal = {Compositio Mathematica},
pages = {137--149},
year = {1991},
publisher = {Kluwer Academic Publishers},
volume = {80},
number = {2},
mrnumber = {1132090},
zbl = {0741.17002},
language = {en},
url = {https://www.numdam.org/item/CM_1991__80_2_137_0/}
}
TY - JOUR
AU - Nishiyama, Kyo
TI - Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $
JO - Compositio Mathematica
PY - 1991
SP - 137
EP - 149
VL - 80
IS - 2
PB - Kluwer Academic Publishers
UR - https://www.numdam.org/item/CM_1991__80_2_137_0/
LA - en
ID - CM_1991__80_2_137_0
ER -
%0 Journal Article
%A Nishiyama, Kyo
%T Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $
%J Compositio Mathematica
%D 1991
%P 137-149
%V 80
%N 2
%I Kluwer Academic Publishers
%U https://www.numdam.org/item/CM_1991__80_2_137_0/
%G en
%F CM_1991__80_2_137_0
Nishiyama, Kyo. Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $. Compositio Mathematica, Tome 80 (1991) no. 2, pp. 137-149. https://www.numdam.org/item/CM_1991__80_2_137_0/
[1] , , and Representation theory of superconformal quantum mechanics. J. Math. Phys., 29:1163-1170, 1988. | Zbl | MR
[2] Algèbre, Chap. 9. Hermann, 1959. | Zbl
[3] Theory of Lie groups I. Princeton Univ. Press, 1946. | Zbl | MR
[4] , , and Graded Lie algebras in mathematics and physics (bose-Fermi symmetry). Reviews of Modern Phys., 47:573-603, 1975. | Zbl | MR
[5] C. Fronsdal, editor. Essays on Supersymmetry. Reidel, 1986. | MR
[6] and Representations of Lie super algebras, I. Extensions of representations of the even part. J. Math. Kyoto Univ., 28:695-749, 1988. | Zbl | MR
[7] On the role of Heisenberg group in harmonic analysis. Bull. AMS, 3:821-843, 1980. | Zbl | MR
[8] Remarks on classical invariant theory. Trans. AMS, 313:539-570, 1989. | Zbl | MR
[9] and On the Segal-Shale-Weil representations and harmonic polynomials. Inv. Math., 44:1-47, 1978. | Zbl | MR
[10] Oscillator representations for orthosymplectic algebras. J. Alg., 129:231-262, 1990. | Zbl | MR
[11] Super dual pairs and unitary highest weight modules of orthosymplectic algebras. To appear in Adv. in Math. | Zbl
[12] Dirac operator and the discrete series. Ann. Math., 96:1-30, 1972. | Zbl | MR
[13] Dual resonance theory. Phys. Rep., 8C:269-335, 1973.
[14] and Hermitian Lie algebras and metaplectic representations. I. Trans. AMS, 238:1-43, 1978. | Zbl | MR
[15] Graded generalizations of Weyl- and Clifford algebras. J. Pure and Appl. Alg., 10:163-168, 1977. | Zbl | MR
[16] Sur certain groupes d'operateurs unitairs. Acta Math., 111:143-211, 1964. | Zbl | MR





