@article{CM_1987__62_2_95_0,
author = {Itoh, Mitsuhiro},
title = {Yang-Mills connections over a complex surface and harmonic curvature},
journal = {Compositio Mathematica},
pages = {95--106},
year = {1987},
publisher = {Martinus Nijhoff Publishers},
volume = {62},
number = {2},
mrnumber = {898730},
zbl = {0625.53031},
language = {en},
url = {https://www.numdam.org/item/CM_1987__62_2_95_0/}
}
Itoh, Mitsuhiro. Yang-Mills connections over a complex surface and harmonic curvature. Compositio Mathematica, Tome 62 (1987) no. 2, pp. 95-106. https://www.numdam.org/item/CM_1987__62_2_95_0/
1 : A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pure et Appl. 35 (1957) 235-249. | Zbl | MR
2 , and : Self-duality in four dimensional Riemannian geometry. Proc. Roy. Soc. London, Ser. A 362 (1978) 425-461. | Zbl | MR
3 : Stability and isolation phenomena for Yang-Mills fields. Commun. Math. Phys. 79 (1981) 189-230. | Zbl | MR
4 : An application of gauge theory to four dimensional topology. J. Differential Geometry 18 (1983) 279-315. | Zbl | MR
5 : Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985) 1-26. | Zbl | MR
6 and : Instantons and four-manifolds. New York: Springer-Verlag (1984). | Zbl | MR
7 : On the moduli space of anti-self-dual Yang-Mills connections on Kähler surfaces. Pub. R.I.M.S. Kyoto 19 (1983) 15-32. | Zbl | MR
8 : The moduli space of Yang-Mills connections over a Kähler surface is a complex manifold. Osaka J. Math. 22 (1985) 845-862. | Zbl | MR
9 : Curvature and stability of vector bundles. Proc. Japan Acad. Ser. A, Math. Sci. 58 (1982) 158-162. | Zbl | MR
10 , and : On instability of Yang-Mills connections. Math. Z. 193 (1986) 165-189. | Zbl | MR | EuDML
11 and : Complex manifolds. Holt, Rinehalt and Winston (1971). | Zbl | MR
12 : An L2-isolation theorem for Yang-Mills fields. Comp. Math. 47 (1982) 153-163. | Numdam | Zbl | MR | EuDML
13 : The gap phenomena of Yang-Mills fields over the complete manifold. Math. Zeit. 189 (1982) 69-77. | Zbl | MR | EuDML
14 : Stability in Yang-Mills theories. Commun. Math. Phys. 91 (1983) 235-263. | Zbl | MR





