@article{CM_1986__58_3_371_0,
author = {Van Dijk, G. and Poel, M.},
title = {The {Plancherel} formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$},
journal = {Compositio Mathematica},
pages = {371--397},
year = {1986},
publisher = {Martinus Nijhoff Publishers},
volume = {58},
number = {3},
mrnumber = {846911},
zbl = {0593.43009},
language = {en},
url = {https://www.numdam.org/item/CM_1986__58_3_371_0/}
}
TY - JOUR
AU - Van Dijk, G.
AU - Poel, M.
TI - The Plancherel formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$
JO - Compositio Mathematica
PY - 1986
SP - 371
EP - 397
VL - 58
IS - 3
PB - Martinus Nijhoff Publishers
UR - https://www.numdam.org/item/CM_1986__58_3_371_0/
LA - en
ID - CM_1986__58_3_371_0
ER -
%0 Journal Article
%A Van Dijk, G.
%A Poel, M.
%T The Plancherel formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$
%J Compositio Mathematica
%D 1986
%P 371-397
%V 58
%N 3
%I Martinus Nijhoff Publishers
%U https://www.numdam.org/item/CM_1986__58_3_371_0/
%G en
%F CM_1986__58_3_371_0
Van Dijk, G.; Poel, M. The Plancherel formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$. Compositio Mathematica, Tome 58 (1986) no. 3, pp. 371-397. https://www.numdam.org/item/CM_1986__58_3_371_0/
[1] : Représentations de groupes localement compacts, Lecture Notes in Mathematics, Vol. 276. Springer, Berlin etc. (1972). | Zbl | MR
[2] : Vecteurs différentiables dans les représentations unitaires des groupes de Lie, Lecture Notes in Mathematics, Vol. 514, 20-33. Springer, Berlin etc. (1976). | Zbl | MR | Numdam
[3] et al.: Higher Trancendental Functions, Vol. I. New York: McGraw-Hill (1953). | Zbl
[4] et al.: Higher Transcendental Functions, Vol. II. New York: McGraw-Hill (1953). | Zbl
[5] : Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. 58 (1979) 369-444. | Zbl | MR
[6] : Discrete series characters on non-Riemannian symmetric spaces, thesis, Harvard University, Cambridge (Mass.) (1984).
[7] and Spherical distributions on the pseudo-Riemannian space SL(n, R)/GL(n-1, R), Report no 23, University of Leiden, 1984 (to appear in J. Funct. Anal.). | MR
[8] and : Universelle umhüllende Algebra einer Lokal kompakten Gruppe und ihre selbstadjungierte Darstellungen. Anwendungen. Studia Math., 24 (1964) 227-243. | Zbl | MR
[9] : The Plancherel formula for the pseudo-Riemannian space SL(3, R)/GL(2, R). Sibirsk Math. J. 23 (1982) 142-151 (Russian). | Zbl
[10] : Analytic vectors. Ann. of Math. 70 (1959) 572-615. | Zbl | MR
[11] : Analysis on real hyperbolic spaces. J. Funct. Anal. 30 (1978) 448-477. | Zbl | MR
[12] : The theorem of Bochner-Schwartz-Godement for generalized Gelfand pairs. In: K.D. Bierstedt and B. Fuchsteiner (eds.), Functional Analysis: Surveys and recent results III, Elseviers Science Publishers B.V. (North Holland) (1984). | Zbl | MR
[13] : Invariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formula. Report PM-R 8409, Centre for Mathematics and Computer Science, Amsterdam (1984).
[14] : On generalized Gelfand pairs. Proc. Japan Acad. Sc. 60, Ser. A(1984) 30-34 | Zbl | MR





