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0. Introduction

The main result of this paper is a Plancherel formula for the rank one

symmetric space X = SL(n, R)/GL(n - 1, R), n  3. This means a des-
integration of the left regular representation of G on L2(X) into
irreducible unitary representations. One can also formulate it in terms of
spherical distributions (cf. [7]). Then we are determining a desintegration
of the 8-distribution at the origin of X into extremal positive-definite
spherical distributions.

Section 1 and 2 are concerned with a precise definition. We also ask
for uniqueness of the desintegration and introduce once more the notion
of a generalized Gelfand pair. Special attention is paid to the relative
discrete series. Section 3 contains the abstract theory, while Section 4 is
devoted to an explicit determination of a parametrization of the relative
discrete series for the space under consideration. The results we obtain
are applied in Section 5 where the Plancherel formula is determined by a
method previously used by Faraut [5]. This paper is a continuation of
earlier work [7] and depends heavily on it. Recently Molcanov [9] has
obtained the Plancherel formula for the case n = 3 by a quite different
method. Our analysis of the relative discrete series seems to have some
analogy with work of Kengmana [6].

1. Invariant Hilbert subspaces of D’(G/H)

Let G be a real Lie group and H a closed subgroup of G. Throughout
this paper we assume both G and H to be unimodular. Let us fix Haar
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measures dg on G, d h on H and a G-invariant measure dx on G/H in
such a way that dg = d x dh.
We shall take all scalar products anti-linear in the first and linear in

the second factor.

Let qr be a continuous unitary representation of G on a Hilbert space
W. A vector v ~ H is said to be a C~-vector if the map g ~ 03C0(g)v is in
Cl(6’, H). The subspace £00 of C~-vectors in H can be endowed
with a natural Sobolev-type topology (cf. [2], §1). Let us recall the

definition. Let g be the Lie algebra of G. For any X E g and v EYt’oo,
put

Then 03C0(X) leaves £’00 stable. The topology is defined by means of the
set of norms ~·~m given by the following formula. Let Xl,..., Xn be a
basis of g. Then

with |03B1| = 03B11 + ... + 03B1n, 03B1i non-negative integers (v ~ H~). H~ be-

comes a Frechet space in this manner.
The topology does not depend on the choice of the basis of g. The

space £’00 is G-invariant. The corresponding representation of G on £’00
is called 03C0~; the map ( g, v) ~ 03C0~(g)v is continuous G X £’00 ~ H~.

Denote H-~ the anti-dual of H~, endowed with the strong topol-
ogy. The inclusion £’00 c £’ and the isomorphism of the Hilbert space H
with its anti-dual yield an inclusion £’c H -~, so H~ c £’c ye 00. The
injections are continuous. G acts on H-~ and the corresponding
representation is called 03C0-~. Denote by D(G), D(G/H) the space of
C~-functions with compact support on G and G/H respectively, endo-
wed with the usual topology. Let D’( G ), D’(G/H) be the topological
anti-dual of D(G) and D(G/H) respectively, provided with the strong
topology.

For v~H~, a~H-~ we put (v, a~=a(v) and we write (a, v)
instead of (v, a~. Similarly we put ~~, T~ = ~T, ~~ = T(~) for ~ E
D(G/H), T~D’(G/H). Denote ~0 ~ ~ the canonical projection map
D(G) ~ D(G/H) given by
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Then 03C0-~(~0)a ~ H~. a vector a ~ H-~ is called cyclic if

{03C0-~(~0)a: ço OE D(G)} is a dense subspace of Ye. Define

We say that qr can be realized on a Hilbert subspace of D’( G/H ) if
there is a continuous linear injection j : J*fi- D’( G/H ) such that

for all g E G ( Lg denotes the left translation by g). The space j( Yl’) is
said to be an invariant Hilbert subspace of D’(G/H).

THEOREM 1.1: -u can be realized on a Hilbert subspace of D’(G/H) if and
only if HH-~ contains non-zero cyclic elements. There is an one-to-one

correspondence between the non-zero cyclic elements of drt and the

continuous linear injections j: D’(GIH) satisfying jTT(g) = Lg j (g E
G). To a cyclic vector a =1= 0 in HH-~ corresponds j, such that j*:
D(G/H) ~ Ye is given by j * (0) = 03C0-~(~0)a.

The proof is quite similar to [2, Théorème 1.4].
Let TT be a representation realized on D’(G/H) and j : H~ D’(G/H)

the corresponding injection. Denote by 03BE03C0 the cyclic vector in HH-~.
defined by Theorem 1.1. Then we put

T is a distribution on G which is left and right H-invariant. We call T
the reproducing distribution of 17 (or H). T is positive-definite, bi-H-in-
variant and

for all ~0 E D(G). Here 0 is given by 0(g) = ~0(g-1) ( g E G ). Given a
postive-definite bi-H-invariant distribution T on G, the latter formula
shows the way to define a G-invariant Hilbert subspace of D’(G/H)
with T as reproducing distribution. Indeed, let be the space D(G/H)
provided with the inner product

Let V0 be the subspace of V consisting of the elements of length zero
and define A’ to be the completion of V /Vo and j* the natural

projection D(G/H) ~ H. Then clearly

for all
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Furthermore, an easy calculation shows that jv is a C’-function for
all v E £00. Actually

Note that j can be defined on Ye (as anti-dual of j*: D(G/H) -
H~). Then j(03BE03C0) is precisely the reproducing distribution T, considered
as an H-invariant element of D’(G/H). One has

for all CPo E D( G).
Summarizing we have

PROPOSITION 1.2: The correspondence H ~ T which associates with each
invariant Hilbert subspace of D’(G/H) its reproducing distribution is a

bijection between the set of G-invariant Hilbert subspaces of D’(G/H) and
the set of bi-H-invariant positive-definite distributions on G.

Denote 0393G the set of bi-H-invariant positive-definite distributions and
ext(0393G) the subset of those distributions which correspond to minimal
G-invariant Hilbert subspaces of D’( G/H ) (or: to irreducible unitary
representations 7T realized on a Hilbert subspace of D’( G/H )). Choose
an admissible parametrization s - TS of ext(0393G) as in [12]. Here S is a
topological Hausdorff space. Then one has

PROPOSITION 1.3 [12, Proposition 9]: For every T ~ 0393G there exists a

( non-necessarily unique) Radon measure m on ,S such that

for all

This result, except for the fixed parametrization independent of T, has
been obtained by L. Schwartz and K. Maurin. See [12] for references.
The proof of Proposition 1.3 is obtained by diagonalising a maximal
commutative C*-algebra commuting with the action of G in the Hilbert
subspace, associated with T. The fixed parametrization can then be
obtained by the techniques of [12]. Clearly we are mainly interested in
the decomposition of the distribution T ~ 0393G given by

which corresponds to the 8-function at the origin of G/H.
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This could be called a Plancherel formula for G/H.
Let G be a connected, non-compact, real semisimple Lie group with

finite center and a an involutive automorphism of G. Let H be an open
subgroup of the group of fixed points of o. The pair (G, H) is called a
semisimple symmetric pair.

Let D( G / H) denote the algebra of G-invariant differential operators
on G/H. It is known that D G/H) is a commutative, finitely generated
algebra. For any D ~ D(G/H, define ’D by

for all ~, 03C8 ~ D(G/H). Then tD ~ D(G/H). So D(G/H) is generated by
" self adjoint" elements. Let D ~ D(G/H) be such that D = tD. Then,regarding D as a density defined linear operator on L2(G/H), D is

essentially self-adjoint. The proof of this fact in [11, Lemma 9] is

incomplete. E.P. van den Ban [13] has recently shown the following
non-trivial fact: any D E D(G/H) maps L2(X)~ into itself and

for all (p, 4, e L2(X)~. Now the reasoning of the proof of [11, Lemma 9]
goes through, observing that ~0 * 03C8 ~ L2(X)~ for any ~0 ~ D(G) and
03C8 ~ L2(X). Let A be the closed *-algebra (C*-algebra) generated by the
spectral projections of the closures of all self-adjoint D E DGG/H ). By a
result of Nelson [10, p. 603] any two of such closures strongly commute,
so this algebra A is abelian. As mentioned before, the main part of the
proof of Proposition 1.3 is obtained by diagonalising a maximal com-
mutative C*-algebra commuting with the action of G in Ye, H being
the Hilbert subspace associated with T.

So, in our situation, with y(/= L2 ( G/H ) we only have to extend j to
a maximal commutative C*-algebra. The result is a desintegration of
L2(G/H) into irreducible Hilbert subspaces, even a formula of the form

such that Ts is a common eigendistribution for all D E D(G/H), for
m-almost all s E S. Here we regard T, as an element of D’(G/H). For
details of the (abstract) theory, we refer to [8], [12].

PROPOSITION 1.4: Let (G, H) be a semisimple symmetric pair. There
exists a ( non-necessarily unique) Radon measure m on S such that
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(ii) for m-almost all s ~ S, Ts is a common eigendistribution for all
D E D(G/H).

Would Proposition 1.4 answer a problem raised by Faraut [5, p. 371]?

2. (SL(n, R), GL( n - 1, R» is a generalized Gelf and pair f or n  3

We keep to the notation of Section 1. Generalizing the classical notion of
a Gelfand pair, we define

DEFINITION 2.1: The pair (G, H) is called a generalized Gelfand pair if
for each irreducible unitary representation 03C0 on a Hilbert space A, one has
dim HH-~  1.

The following result is proved in [12].

PROPOSITION 2.2. The following statements are equivalent:
(i) ( G, H) is a generalized Gelfand pair
(ii) For any unitary representation 03C0 which can be realized on a Hilbert

subspace of D’(G/H), the commutant of 03C0(G) c2(£) is abelian.
[L(H): the algebra of the continuous linear operators of dr into
itself ]

(iii) For every T E rG there exists a UNIQUE Radon measure m on S
such that

for all ~0 E D(G).

For a more detailed discussion of generalized Gelfand pairs, including
examples, we refer to [14]. Most examples are connected with symmetric
spaces.

Let G be a connected semisimple Lie group with finite center, Q an
involutive automorphism of G and H an open subgroup of the group of
fixed points of Q. Then it was recently shown by E.P. van den Ban [13]
that for every irreducible unitary representation 77 of G on A, dim HH-~
 oo . He actually shows the following. Choose a Cartan involution 0 of
G commuting with J and let K be the group of fixed points of 0. Given
a finite-dimensional irreducible representation S of K and an infinitesi-
mal character x, we write A(G/H; x) for the space of right H-invariant
real analytic functions 0: G - C satisfying z · ~ = ~(z)~ for all z E Z( g )
[center of the universal enveloping algebra of the Lie algebra g of G],
and A03B4(G/H ; ~) for the subspace of K-finite elements of type 8. Then
dimCA03B4(G/H; ~)  |W(~) |dim(03B4)2, where W(03A6) is the Weyl group of
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the complexification gc of g with respect to a Cartan subalgebra. This
result clearly implies that HH-~ is of finite dimension. Indeed, let v be a
non-zero K-finite element in P of type 8 and let X be the infinitesimal
character of 7T. For any subset (03BEi03C0) of linearly independent elements in
HH-~, the set of functions CPl(g) = ~03BEi, 03C0(g-1)v~ (g ~ G ) is also linearly
independent. Clearly ~i ~ A03B4(G/H;~). The proof of van den Ban’s
result is completely in the spirit of Harish-Chandra’s work. We now
come to the pair (SL(n, R), GL( n - 1, R)).

THEOREM 2.3: The semisimple symmetric pair (SL(n, R), GL( n - 1, R»
is a generalized Gelfand pair for n  3.

To prove this theorem, we apply a very useful criterion, due to Thomas
(see [12, Theorem E]).

PROPOSITION 2.4: Let J: D’(G/H) ~ D’(G/H) be an anti-automor-

phism. If J£=£ (i.e. J 1 Yê anti-unitary) for all G-invariant or minimal
G-invariant Hilbert subspaces of D’(G/H) then (G, H) is a generalized
Gelfand pair.

The proof is rather easy and consists of showing (ii) of Proposition 2.2.

In our situation we take JT = T. To show that J satisfies the conditions
of Proposition 2.4, it suffices to show the following: any positive-definite
bi-H-invariant distribution T on G satisfies  = T. Here (T, ~0~ =
~T, 0~, 0(g) = ~0(g-1) (g ~ G, CPo E D(G». By desintegration (Pro-
position 1.3) one sees that T may even be assumed to be spherical. We
shall use the notation of [7] from now on. There is a right H-invariant
function Q on G = SL( n, R), defined by

where

with the following property. Put X = G/H. For ç OE D(X) define Mç on
R by

for all and put the
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usual topology on Jf. (See also Section 4). Then by [7, section 8] any
spherical T is of the form T = M’S for some S ~ K’. So (T, ~~ =
~S, Mç ) for all ç OE D(X). Here T has to be regarded as an H-invariant
distribution on X. More precisely, putting

we have the equality ~T, f~ = ~T, f#~, where on the right-hand-side T
has to be regarded as an H-invariant distribution on X. The problem to
be solved amounts to the relation M()# = Mf# for all f E D(G). For
all F ~ Cc(R) one has

Since Q( g) = Q( g-1 ) we get the result and the proof of Theorem 2.3 is
complete.

REMARK: (SL(2, R), GL(1, R)) is not a generalized Gelfand pair.

3. Invariant Hilbert subspaces of L2(G / H)

We keep to the notations of Section 1. Let qr be a unitary representation
of G on a Hilbert space Je, which can be realized on a Hilbert subspace
of D’(G/H). Let j : Ye- D’(G/H) be the corresponding injection.
Define 03BE03C0, T, j* as usual.

PROPOSITION 3.1: The following conditions on 7T are equivalent:
(i ) j(H) ~ L2(G/H)

(ii) There exists a constant c &#x3E; 0 such that for all ~0 E D(G),
|~T, 0 * ~~|  c ~~~22.

PROOF: (i) ~ (ii): The map j : H ~ L2(G/H) is closed and everywhere
defined on Je, hence continuous by the closed graph theorem. This
implies that j*: D(G/H) -P is continuous in the L2-topology of
D(G/H), so (ii) follows.

(ii) ~ (i): Clearly (ii) implies that j* is continuous with respect to the
L2-topology. Extend j* to L2(G/H). Then clearly j(H) c L2(G/H).
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We shall say that 7T belongs to the relative discrete series of G (with
respect to H) if 7T is irreducible and satisfies one of the conditions of

Proposition 3.1. We shall occasionally use the terminology: 7T is square-
integrable mod H.

PROPOSITION 3.2: Let 7T be an irreducible unitary representation of G on
H, which can be realized on a Hilbert subspace of D’(G/H). Let j:
H ~ D’(G/H) be the corresponding injection. The following statements are
equivalent:

( i ) 7T is square-integrable mod H
(ii) j(H) is a closed linear subspace of L2(G/H)
(iii) j(v) E L2(G/H) for a non-zero element v ~ H.

PROOF: It suffices to prove the implication (iii) ~ (ii). Let P = {w E
H: j(w) E L2(G/H)}. Clearly P is a G-stable and non-zero linear

subspace of H, hence dense in -ye. Now observe that j : P - L2(G/H)
is a closed linear operator: if wk ~ w(wk E P, w E.Ye) and jWk - f in
L2(G/H), then obviously j(w) E D’(G/H) is equal to f as a distribu-
tion. Polar decomposition of j and applying Schur’s Lemma yields: j
can be extended to a continuous linear operator H ~ L2(G/H) with
closed image (cf. [1, p. 48]).

REMARK: It also follows (see [1, p. 48]) that there is a constant c &#x3E; 0 such

that ~jv~2 = c~ VII I for all v E.Ye.

One has the following orthogonality relations.

PROPOSITION 3.3: Let 7T, 7T’ be irreducible unitary representations on Ye,
H’, both belonging to the relative discrete series. Define T, T’ and 03BE03C0, 03BE03C0’
as usual. Then one has:

(ii) There exists a constant d’TT &#x3E; 0, only depending on T, such that

for all v, v’ E H~.

To prove this proposition, one follows the well-known receipt to intro-
duce the invariant hermitian form
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on £00 X Ye.. This form is continuous with respect to the topology on
Y1X Ye’. Schur’s lemma now easily implies the result. The "only" de-
pendency on T follows from the formula: ~ jj*~0~22 = d-’ ~ j*~0~ 2, so
Il * T’ 112 = d;’ l(T, 0 * ~~ for all ~0 ~ D(G).

REMARK: Observe that ~ jv 112 = d-1/203C0 ~v~ for all v ~ H~. So c, intro-
duced before, is equal to d- 1/203C0.

The constant d03C0 is called the formal degree of 7T. It depends on the
choice of j (or T ). Once a canonical choice j (or T ) is possible, d03C0 has
a more realistic meaning.

EXAMPLE : Let G1 be as usual. Let G = GB X G1 1 and H = diag(G). Let 7T
be an irreducible unitary representation of G. 7T can be realized on a
Hilbert subspace of D’(G/H) ~ D’(G1) if 7T is of the form ?Tl 0 7T1’
where 7T1 is an irreducible unitary representation of G1 on Pi whose

(distribution-) character 01 exists [12]. Actually, the reproducing distribu-
tion T associated with 7r, can be taken equal to 03B81. This is a canonical
choice. The injection j : H1 ~2 H1 ~ D’(G1) has the form

In this case Propositions 3.2 and 3.3 yield the well-known properties of
square-integrable representations of G1 (cf. [1, 5.13-5.15]). Note that
any square-integrable representation 03C01 of G, has a distribution-char-
acter.

Let us assume that (G, H) is a generalized Gelfand pair. Denote by
E2(G/H) the set of equivalence-classes of irreducible square-integrable
representations mod H. Fix a representative qr in each class, together
with the realisation j03C0 on a Hilbert subspace of L2(G/H) and call this
set of representatives S. Denote by TTT the reproducing distribution and
by d03C0 the formal degree of qr. Let 3g be the space of 17. Define

Hd= ~ j03C0(H03C0) and let E be the orthogonal projection of L2(G/H)
ontol f. Then one has the following (partial) Plancherel formula for
the relative discrete series.

PROPOSITION 3.4: For all ~0 ~ D(G),

Notice that E~ ~ C~(G/H) for all ~0 ~ D(G/H). So the formula in
Proposition 3.4 is equivalent to
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The above formulae do not depend on the choice of the set S : d03C0T03C0 is

independent of the choice of qr in its equivalence class and the choice of
j03C0. In fact, d03C0~T03C0, 0 1 E03C0~~22, where E03C0 is the orthogonal projec-
tion of L2(G/H) onto j03C0(H03C0). Indeed, choose an orthogonal basis ( el )
in 3g. Then d1/203C0j(ei) is an orthogonal basis for j03C0(H03C0) and ~E03C0~~22
= L d TT |(jei, ~)|2 = L d TT |(ei, j*~)|2 = d03C0~j*~ Il 2 = d03C0~T03C0, 0 * ~~.

REMARK: The above proposition is easily extended to the case of finite
multiplicity: m03C0 = dim HH-~  ~ for all 03C0 ~ E2(G/H). Indeed, we can
choose for each qr, T103C0,..., Tm(03C0)03C0 such that the corresponding Hilbert
subspaces are orthogonal (regarded as subspaces of L2(G/H)) and the
G-action is equivalent to qr. Then the above formula reads;

Again  di03C0~Ti03C0, 0 * ~~ = E 2 where E03C0 is the ortogonal projec-

tion of L2(G/H) onto C ji03C0(Hi03C0)=Cl( L j03C0’(H03C0’)). If (G, H ) is a

semisimple symmetric pair, then E.P. van den Ban [13] has recently
shown that the Ti03C0 can be chosen in such a way that they are common
eigendistributions of D( G / H), the algebra of G-invariant differential

operators on G/H. However, different eigenvalues may occur.

4. The relative discrète séries of SL(n, R) GL(n - 1, R)

We recall briefly some facts from [7].
Let G = SL(n, R), H = S(GL(1, R) X GL(n - 1, R)), n  3. (G, H ) is

a semisimple symmetric pair. Write X = G/H. Let x0 be the n X n

matrix given by 1 0 * G acts on the space of real n X n matrices
Mn(R) by g · x = gxg -1 ( g E G, x ~ Mn(R)). X is naturally isomorphic
to 6’ ’ x ° = f x E Mn(R): rank x = trace x = 1}. We defined a function
Q : X-R by Q(x) = [x, x0], where [x, y] = trace xy (x, y ~ Mn(R)).
Q has the following properties:

a. Q is H-invariant.
b. x0 is a non-degenerate critical point for Q. The Hessian of Q in this

point has signature (n - 1, n - 1).
c. Besides x°, the set 5°c X, consisting of elements of the form
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with T E Mn-1(R), rank T = trace T = 1, is a critical set of Q. For
each x OE 5° one can choose coordinates xl , ... , X 2n - 2 near x such

that Q = X1X2 and Y is given by x, = X2 = 0.
d. If X =1= x° and x %É 5° then x is not a critical point of Q.
e. Q is real analytic.
f. Q assumes all real values.
g. For 03BB ~ 0, 1, Q(x) = À is an H-orbit.
h. Q(x) = 1 consists of 4 H-orbits.
i. Q(x) = 0 consists of 3 H-orbits.

Define for f E D(X) the function Mf on R by the property

for all F E C~c(R). Put K=M(D(X). K consists of all functions of
the form

where

y being the Heaviside function: Y(t) = 1 if t  0, Y(t) = 0 if t  0.

Let Do be the Laplace-Beltrami operator on X and put 0 = 2~0. One
can topologize r in such a way that

a. M: D(X) ~ K is continuous.
b. Any H-invariant eigendistribution T ouf 1:1 is of the form T = M’S

for some S Er’.
c. ~ · M’ = M’ . L, where L is the second order differential operator

on R, given by L = a(t)d2/dt2 + b(t)d/dt, with a(t) = 4t(t - 1),
b(t) = 4(nt - 1).

Denote D’03BB,H(X) the space of H-invariant eigendistributions T of 0 on
X with eigenvalue À.

PROPOSITION 4.1: dim D’03BB,H(X) = 2 for all 03BB ~ C.

This is shown in [7, Proposition 7.10]. Let T E D’03BB,H(X). Then there is a
continuous linear form S on K=M(D(X)) satisfying LS = 03BBS such
that
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Since x ~ Q(x) is submersive on X - {x0) - Q, S is actually a distribu-
tion on R B (0, 11. Since L is elliptic there, we see that S is an analytic
function R B {0, 1}. By abuse of notation we shall also call it S. Now

notice that Lu = u is a hypergeometric differential equation. Let À = s2
- p2 (s E C) with p = n - 1. In [7, section 8] we have given a basis M’S°
and M’S2 if n is odd, M’S° and M’S1 if n is even, of D’03BB,H(X), for all s
satisfying Im s ~ 0. It is not difficult to extend the results in a natural

way to all s with Re(s)  0. If s E N, analytic continuation does not
work, one has to construct the distributions S0, S1 and S2 by the method
of [7, Appendix 2 and Section 8]. Instead of giving full details we shall
describe the asymptotics of So, S, and S2 as t ~ ± ~.
I. s ~ Z, Re( s ) &#x3E; 0. ([7, Lemma 8.1])

where

where di,±(s) are as before.
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Here we apply [3, formula (36) on page 107].
We now split up the cases n odd and n even.

The latter formula follows from [3, p. 109, formula (7)].

So is a polynomial of degree 1 with leading coefficient

where
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By [3, p. 110, formula (11)] we get

Put

(apply [3, p. 109, formula (7)])

(apply [3, p. 109, formula (7)]).


