@article{CM_1985__55_1_3_0,
author = {Slodowy, Peter},
title = {A character approach to {Looijenga's} invariant theory for generalized root systems},
journal = {Compositio Mathematica},
pages = {3--32},
year = {1985},
publisher = {Martinus Nijhoff Publishers},
volume = {55},
number = {1},
mrnumber = {791645},
zbl = {0609.20024},
language = {en},
url = {https://www.numdam.org/item/CM_1985__55_1_3_0/}
}
TY - JOUR AU - Slodowy, Peter TI - A character approach to Looijenga's invariant theory for generalized root systems JO - Compositio Mathematica PY - 1985 SP - 3 EP - 32 VL - 55 IS - 1 PB - Martinus Nijhoff Publishers UR - https://www.numdam.org/item/CM_1985__55_1_3_0/ LA - en ID - CM_1985__55_1_3_0 ER -
Slodowy, Peter. A character approach to Looijenga's invariant theory for generalized root systems. Compositio Mathematica, Tome 55 (1985) no. 1, pp. 3-32. https://www.numdam.org/item/CM_1985__55_1_3_0/
[1] : Groupes et algèbres de Lie, IV, V, VI, Hermann, Paris (1968). | MR
[2] : Singular elements of semisimple algebraic groups, Actes Congrès Intern, Math. (1970) t. 2, 279-284. | Zbl | MR
[3] and : Basic representations of affine Lie algebras and dual resonance models, Inventiones Math. 62 (1980) 23-66. | Zbl | MR
[4] and : On defining relations of certain infinite-dimensional Lie algebras, Bull. AMS, New Ser, 5 (1981) 185-189. | Zbl | MR
[5] and : Lie algebra homology and the Macdonald-Kac formulas, Inventiones Math. 34 (1976) 37-76. | Zbl | MR
[6] : The arithmetic theory of loop algebras, J. Algebra 53 (1978) 480-551. | Zbl | MR
[7] : The arithmetic theory of loop groups, Publ. Math. I.H.E.S. 52 (1980) 5-136. | Zbl | MR | Numdam
[8] : Simple irreducible graded Lie algebras of finite growth, Math. USSR Izvestija 2 (1968) 1271-1311. | Zbl | MR
[9] : An algebraic definition of the compact Lie groups, Trudy MIEM 5 (1969) 36-47 (in Russian).
[10] : Infinite-dimensional Lie algebras and Dedekind's η-function, Functional Anal. Appl. 8 (1974) 68-70. | Zbl
[11] : Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Advances in Math. 30 (1978) 85-136. | Zbl
[12] : Infinite root systems, representations of graphs, and invariant theory, Inventiones Math. 56 (1980) 57-92. | Zbl | MR
[13] and : Affine Lie algebras and Hecke modular forms, Bull. AMS 3 (1980) 1057-1061. | Zbl | MR
[14] and : Infinite-dimensional Lie algebras, θ-functions, and modular forms. Advances in Math. 53 (1984) 125-264. | Zbl
[15] and : Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular surfaces, Math. Ann. 245 (1979) 63-88. | Zbl | MR
[16] : Root systems and elliptic curves, Inventiones Math. 38 (1976) 17-32. | Zbl | MR
[17] :On the semi-universal deformation of a simple elliptic singularity II, Topology 17 (1978) 23-40. | Zbl | MR
[18] : Invariant theory for generalized root systems, Inventiones Math. 61 (1980) 1-32. | Zbl | MR
[19] : Rational surfaces with an anti-canonical cycle, Annals of Math. 114 (1981) 267-322. | Zbl | MR
[20] ! Affine root systems and Dedekind's η-function, Inventiones Math. 15 (1972) 91-143. | Zbl
[21] : Tits' systems in generalized nonadjoint Chevalley groups, J. Algebra 34 (1975) 84-96. | Zbl | MR
[22] : Déformations des surfaces de del Pezzo, de points doubles rationnels et des cônes sur une courbe elliptique, Thèse 3eme cycle, Université de Paris VII, 1980.
[23] : Characters of rank two hyperbolic Lie algebras as functions at quasiregular cusps. J. Algebra 76 (1982) 494-504. | Zbl | MR
[24] : A new class of Lie algebras, J. Algebra 10 (1968) 211-230. | Zbl | MR
[25] : Euclidean Lie algebras, Can. J. Math. 21 (1969) 1434-1454. | Zbl | MR
[26] , : Tits' systems with cristallographic Weyl groups, J. Algebra 21 (1972) 178-190. | Zbl | MR
[27] : Simple elliptic singularities, Del Pezzo surfaces and Cremona transformations, Proc. Symp. Pure Math. 30 (1977) 69-71. | Zbl | MR
[28] : Simple singularities and simple algebraic groups, Lecture Notes In Math. 815, Springer, Berlin-Heidelberg -New York (1980). | Zbl | MR
[29] : Chevalley groups over C((t)) and deformations of simply elliptic singularities, RIMS Kokyuroku 415, 19-38, Kyoto University (1981). | MR
[30] : Adjoint quotients for Kac-Moody groups and deformations of special singularities, Seminar talks, Paris, March 1981.
[31] : Regular elements of semisimple algebraic groups, Publ. Math. I. H. E. S. 25 (1965) 49-80. | Zbl | MR | Numdam
[32] : Conjugacy classes in algebraic groups, Lecture Notes in Math. 366, Springer, Berlin-Heidelberg -New York (1974). | Zbl | MR
[33] : Resumé de cours, Annuaire du Collège de France 1980-1981, 1981-1982, Collège de France, Paris.
[34] : Définition par générateurs et relations de groupes avec BN-paires, C.R. Acad. Sc. Paris 293 (1981) 317-322. | Zbl | MR
[35] : Discrete linear groups generated by reflections, Math. USSR Izvestija 35 (1971) 1083-1119. | Zbl | MR
[36] and : Unitary structure in representations of infinite-dimensional groups and a convexity theorem, Inventiones Math. 76 (1984) 1-14. | Zbl | MR






