
COMPOSITIO MATHEMATICA

PETER SLODOWY
A character approach to Looijenga’s invariant
theory for generalized root systems
Compositio Mathematica, tome 55, no 1 (1985), p. 3-32
<http://www.numdam.org/item?id=CM_1985__55_1_3_0>

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1985__55_1_3_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


3

A CHARACTER APPROACH TO LOOIJENGA’S INVARIANT
THEORY FOR GENERALIZED ROOT SYSTEMS

Peter Slodowy

Compositio Mathematica 55 (1985) 3-32.
@ 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

0. Introduction

According to a theorem of Brieskorn [2], cf. [28], the semiuniversal
deformation X - U of a simple singularity of type Ar, Dr, or Er can be
embedded into the adjoint quotient x : G - T/ W of the corresponding
simply connected complex Lie group G

At other places ([29], [30]), using results of Looijenga and Pinkham ([19],
[27], [22]) we have indicated how at least the "simple" part X’ - U’ of
the semi-universal deformation X - U of a simply elliptic or cusp
singularity of degree  5 can be embedded into a partial adjoint quotient
 ~ J/W for a certain infinite-dimensional group G attached to a

Kac-Moody Lie algebra. Such groups contain a Tits system ( B, N ) such
that T = B r1 N is a finite-dimensional torus and W = N/T is an infinite
cristallographic Coxeter group ([21], [26], [33]). Following Looijenga [18]
one may specify a domain 3Rc T on which W acts properly discontinu-
ously. Thus !TjW inherits the structure of an analytic space, in fact that
of a complex manifold. The subset cg c G on which one can define a map
to 37 W consists of all elements conjugate into B with " T-part" lying in
1.

In this paper we shall describe a step towards the goal of extending the
partial quotient 9 W to allow for an embedding of the full semiuni-
versal deformation X - U. In [19] Looijenga showed how to identify the
base space U with a partial compactification W of 5;/W. His con-
struction of !TjW parallels procedures in the compactification theory for
arithmetic quotients of hermitian symmetric spaces. The space !TjW is
obtained as a W-quotient il7W of an extension g- of f which can be
described in terms of the infinite root system involved, cf., [18]. Our aim
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here is to show that this partial compactification turns up naturally when
one considers the representation theory of the group G. Thus this article
may be considered as a supplement to [18].

To be more precise, let us first recall the classical finite-dimensional
situation.

Let G be a semisimple simply connected complex Lie group of rank r.
Let p, : G - GL(Vi), i = 1,... r denote the fundamental irreducible repre-
sentations and ~i:G~, ~i(g) = trace pl ((g), the corresponding char-
acters. Then the adjoint quotient of G, i.e., the quotient in the category of
algebraic varieties of G by its conjugation action, is given by the map

Let T c G be a maximal torus, N c G its normalizer in G and W = N/T
the corresponding Weyl group. Then the restriction of X to T induces an
isomorphism Ruz C r

The proof of this fact is the object of the classical exponential invariant
theory (cf. [1] or [32]).
Now let G be a group attached to a Kac-Moody algebra g with Tits

system ( B, N ) and torus T = B r1 N. Let 03C0:N~N/T=W be the

projection onto the Weyl group W and let s = dim T. Then there are s
fundamental, in general infinite-dimensional, irreducible representations

In this paper we only consider the restriction of these representations
to N and we specify a domain N~ N on which the characters

can be defined. This domain is the union X= ~wN(w) of its connected
components N(w)=N~03C0-1(w). Here w runs through the set W p of
pure elements of the Weyl group W (cf. 6.2).
We shall show that the map
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factors through Looijenga’s partial compactification

inducing a local isomorphism from :f¡w near "infinity" to an open
subset of Cs. Here T : /- À is a surjective prolongation of the identity
map

sending each component %(w), w ~ 1, onto a boundary component of
e.

This result indicates that unlike the case of the simple singularities
where the semiuniversal deformation is based at the subregular unipotent
conjugacy class of the corresponding Lie group, simply elliptic or cusp
singularities are not related to (pro-) unipotent elements in the corre-
sponding groups. Instead, it seems that we now have to look at the
elements in the group whose behaviour under the representations resem-
bles that of Weyl group elements of infinite order. We hope that a further
analysis of this point will finally allow to complete the full program
mentioned before.

1. Kac-Moody algebras

Kac-Moody-Lie algebras are infinite-dimensional generalizations of semi-
simple Lie algebras. Their study was independently started by Kac and
Moody ([8], [24]). In this chapter we shall give a quick description of their
construction and some basic properties. Our presentation differs slightly
from the usual ones in that we start the construction from a so-called
root datum (cf. 1.4.). This seems to be more appropriate for the discus-
sion of associated groups (cf. [33]) and also avoids some unnecessary
technical complications (i.e. artificial roots). Moreover, relevant geomet-
ric aspects show up only after enlarging the usual Kac-Moody algebras in
the way we introduce them (cf. [5], [3], [18]). For discussion of examples
(i.e., in the affine case) we refer to [8], [25], [3], [30].

l.l. Cartan matrices

Let r be a natural number, r &#x3E; 1. An r X r integer matrix A = «A¡})) E
M,. (71 ) is called a (generalized) Cartan matrix if it has the following
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properties:

1.2. Coxeter diagrams

To each Cartan matrix A E Mr(Z) we associate a Coxeter diagram in the
following way:

There are r vertices numbered from 1 to r, and two vertices i and j,
i ~ j, are connected by an edge if and only if Aij ~ 0 (~ Ajl ~ 0). In
addition, such an edge is valuated by an integer mij according to the
following list:

However the valuation 3 will be suppressed, for simplicity.

EXAMPLES:

1.3. Classification of Cartan matrices

A Cartan matrix A is called indecomposable if the corresponding Coxeter
diagram is connected. If A is not indecomposable, we may, after possibly
rearranging indices, write A as a direct sum
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of indecomposable Cartan matrices Ai, i = 1,..., n.
According to Vinberg ([35]) the indecomposable Cartan matrices may

be divided into three classes:

(1) the spherical ones, or those of finite type, corresponding to the
classical root systems of type Ar, Br, Cr, Dr, E6, E7, E8, F4, G2-

(2) the euclidean ones, or those of affine type, which correspond to the
affine root systems (cf. [20]). They comprise the Cartan matrices of
the extended Dynkin diagrams.

(3) the remaining ones, which are neither spherical nor euclidean, are
called of general type.

EXAMPLE: Consider the Coxeter diagram Tp,q,r, p, q, r E N.

This diagram determines uniquely a corresponding Cartan matrix, which
we also denote by Tp,q,r. Then Tp,q,r is of spherical, resp. euclidean, resp.
general type if the sum

is greater than 1, resp. equal to 1, resp. smaller than 1. To any such

diagram corresponds an isolated hypersurface singularity in 3 which is
either simple, resp. simply elliptic, resp. a cusp. For other diagrams
attached to related singularities cf. [19].

1.4. Root data

Let A E Mr(Z) be a Cartan matrix. A root datum for A is a triple
(X, ~, ~) consisting of

- a free Z-module X of finite rank,
- a free indexed subset v = (hl,..., hr} c X,
- a free indexed subset 0394 = {03B11,..., 03B1r} ~ X* = Homz(X, Z), such

that 03B1j(hi) = Aij for i, j = 1,..., r.
The elements al E A (resp. hi ~ v) will be called the simple roots (resp.
the simple coroots). Let s be the Z-rank of X. We call s the dimension
and r the rank of the root datum.

1.5. The construction of Kac-Moody algebras

Let (X, ~, ~) be a root datum for a Cartan matrix A E Mr(Z). We let g
be the complex Lie algebra generated by X and the elements e;, f;,



8

i = 1,..., r subject to the following relations:

for all h, h’ E X and i, j = 1,..., r.

The elements of X will generate a commutative subalgebra  = X ~z 
in g, and g will decompose into a direct sum of finite-dimensional
eigenspaces

Here, for a E 6* = Hom(, C) we put

Let reg denote that ideal of g which is maximal among the ideals
intersecting trivially . Then g = g/r is the Kac-Moody algebra associ-
ated to the root datum (X, v, 0394). According to a recent theorem of
Gabber and Kac ([4]) the ideal r is zero in case the Cartan matrix is

"symmetrizable". This condition is fulfilled for all matrices of spherical
or euclidean type as well as for those whose Coxeter diagrams are trees.

Let (X, v, 0394) and (X’, v’, à’) be two root data for A of dimensions
s and s’, s  s’, and let g and g’ be the corresponding Kac-Moody
algebras. Then it is easily seen that g’ is isomorphic to a direct sum of g
and a commutative Lie algebra  of dimension s’ - s. It is also easily
seen that such root data exist (cf. for example [35] §5). If A is inde-

composable one has s  r + corank(A). It is also possible to construct
algebras in the above way by starting from a root datum (X, ~, 0394) in
which v or 0 are not necessarily free (for the Q-classification of such
data, cf. [35] §5). The resulting algebras are easily obtained as subquo-
tients of Kac-Moody algebras associated to root data in the sense of 1.4.
A glance at the defining relations for a Kac-Moody algebra g shows that

(1) the commutator subalgebra c = [g, g ] is generated by the h l, el,
f, i=1,...,r,
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(2) the quotient g/g ’ is isomorphic to b = /{h1,.. , hr},
(3) g is a semidirect product g ~ gc  b.
We have g = gc if and only if det A =1= 0 and dim X = r. The algebra

gc is the one which usually has been called the Kac-Moody algebra g ( A )
associated to A. When det A = 0 this algebra is associated to a "singular"
root datum (X, ~, 0394) in which à is not free.
When A is decomposable into a direct sum of Cartan matrices Ai,

i = 1, ... , n, then the commutator subalgebra g(A)c is a direct sum of the
commutator subalgebras g(Al)c.

It turns out that g(A) is finite-dimensional if and only if A is a direct
sum of spherical matrices. In such a case g(A) is the corresponding
semisimple complex Lie algebra.

1.6. The root decomposition

Let A be a Cartan matrix, (X, B7, d) a root datum for A and g the

Kac-Moody Lie algebra associated to this datum.
Like in the case of g , the image of X in g generates a commutative

subalgebra = X ~z. With respect to 1) there is a decomposition into
finite-dimensional eigenspaces

having the following properties:
(1)  = g o, i.e. 1) is its own centralizer.

Let 1 = {03B1~*B{0}|g03B1 ~ {0}}. The elements of 2 are called the roots
of  in g.

(2) 03A3 = 03A3+~03A3-, where 2 - (Y. ’) and 03A3+ = 03A3 ~.0394. In particu-
lar 03A3 ~ X* ~ *.

(3) A c Y-, hence - 0394 ~ 03A3, and g al (resp. g-03B1l), al E 0, is spanned by
the image of el (resp. fi) in g. 

For simplicity, we shall henceforth denote the images of X, el, fi, in g
by the same symbols.

Define

ut= ~ ga and b = h ~ u+

We shall call h resp. b a standard Cartan subalgebra resp. Borel

subalgebra.

l. 7. The Weyl group

Let W denote the group of automorphisms of X generated by the
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reflections

The group W is called the Weyl group of (X, ~, ~) or g. Its con-

tragredient action on X* is given by analogous formulae

Using for example the geometrical analysis as developed in 4.2, one can
prove that (W, {s1, ..., sr}) is a Coxeter system whose Coxeter diagram is
exactly the diagram associated to the Cartan matrix A in 1.3, cf. [10],
[26], [35].

The action of W on X induces naturally actions on X 0 z R for any
ring R, in particular on h, as well as on h*.

Let p : g ~ gl(g) be the adjoint action of g, and 03C1i:~2 ~ ~(g) the
restriction to the ôt2-subalgebra generated by e, and fi. Then p, decom-
poses into a direct sum of finite-dimensional representations. From this
fact one deduces the following:

(1) The Weyl group W permutes the roots.
(2) dim g a = dim g03C9(03B1) for all a E 3l, w e W.
The set 03A3R = {w(03B1)|03B1 ~ Il, w E W} is called the set of real or Weyl

roots. The complement 03A3I = 03A3B03A3R is called the set of imaginary or
complementary roots.

One has 03A3I =)1 if and only if 2 is finite. For more information on the
structure of 2 we refer to [12].
We have dim g03B1 = 1 if 03B1 ~ 03A3R. For Lie algebras of general type the

dimensions of the root spaces g03B1, a E 03A3I, are unknown, in general.
Let 03B1 ~ 03A3R be a real root. Then there are w - W and a c= A such that

a = w(03B1i). Define

We call Sa the reflection associated to a.

2. Représentations of Kac-Moody atgebras

In this chapter we describe the theory of the so-called standard represen-
tations of a Kac-Moody algebra g. When g is finite-dimensional these

representations coincide with the usual finite-dimensional representa-
tions. For the details of the theory we refer to [10], [11], [5].
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2.1. Weights

Let g be the Kac-Moody algebra attached to a root datum (X, v, 0394),
and let h = X 0 C be its standard Cartan subalgebra.
An element 03C9 ~ h* is called a weight if 03C9(hi)~ Z for all i = 1,..., r.

A weight w is called dominant if 03C9(hi)~N for all i = 1,...,r. Any
dominant weight wi with the property 03C9i(hj) = 03B4ij, j = 1,..., r, is called
an i-th fundamental dominant weight.
. In the context of Lie algebras the integral structure of a root datum is
without any importance. Since this will be different when dealing with
groups we define: A weight 03C9~h* is admissible for (X, v, 0394) if

03C9~X*~h*.
We say that the root datum (X, v, 0394) is simply connected if one may

choose fundamental dominant weights wi in X*, i = 1,..., r. In this case
we may write

where Q is the sublattice generated by the h l, i = 1,..., r, and where D is
the common kernel of the functionals 03C9i: X ~ Z. Moreover, if we put
b = D 0 C we may write g as a semidirect product

The set of all weights P then has the following form

2.2. Standard representations

Recall the notations (cf. 1.6.)

Let ô/I ( g), (b), (u-) denote the universal enveloping algebras of g,
b, u - respectively. We then have 03BC(g) = 03BC(u-)·03BC(b).

Let 03C9~h* be a dominant weight, defining a one-dimensional repre-
sentation 03C9 of b :



12

Let V(03C9) = 03BC(g)~03BC(b)03C9 be the induced module of g. As an h-space
V(03C9) is isomorphic to 03BC(u-)~03C9. By V03C9 we denote the quotient of
V(’) by the maximal g-submodule which does not contain the line
1 ~ 03C9. This g-module V03C9 has the following properties:

(1) hw is irreducible.
(2) As an b-module V03C9 decomposes into a direct sum of finite-dimen-

sional eigenspaces V03C9 = ~03BC~h*V03C903BC, where V’ {v E v03C9|h·v =
03BC(h)03BD for all h ~h}. An element of p ~h* is called a weight of
V03C9 if V03C903BC ~ {0}.

(3) Any weight p of hw has the form

(Hence: if w is admissible for a root datum then it also is.)
(4) V) is the image of 1 ~ 03C9, and dim Tlw = 1.
(5) With respect to the at’2-subalgebra of g generated by a triple ei,

h l, f the module V03C9 decomposes into a direct sum of finite-dimen-
sional ôt2-modules.

From (5) we get:
(6) The set of weights of V03C9 is stable under the action of the Weyl

group W. Moreover we have dim V03C903BC = dim V03C9w(03BC) for all w e W.
Properties (3) and (4) mean that V03C9 is a highest weight module with
highest weight w. An element v E V,,, v * 0, is called a highest weight
vector. Recall u v = 0 by construction. The modules V03C9 are called the

standard modules of g.

2.3. Formal characters

Let ZP denote the set of all functions P ~ Z, where P is the group of
weights. To each element p E P we associate the function e(03BC): P ~ Z
defined by e(03BC)(03BC’)=03B403BC03BC’. The Weyl group W operates naturally on P
and hence on ZP.

Let Yw be the standard module of g corresponding to the highest
weight w. Since the weight spaces of V03C9 are finite-dimensional the

formal character of hw

is a well defined element in ZP. Because of dim V:(JL) = dim V03C903BC, for all
w e W, the character ~03C9 is a W-invariant element in ll p.
When the Cartan matrix of g is symmetrizable there is an analogue of

Weyl’s character formula for xw due to Kac [10].
Later we will interpret these f ormal characters as actual functions, cf.

Chapter 5.
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3. Groups attached to Kac-Moody algebras

In this chapter we want to attach a group G to a Kac-Moody algebra g.
There are actually many possibilities to do so. We shall restrict ourselves
to a group which is minimal with respect to a set of natural properties,
and which suffices for the limited purposes of this paper. In [30] we
consider a completion of G.

The study of groups G attached to g was started by Moody - Teo,
Marcuson, and Garland ([26], [21], [7]). Recently Tits gave a uniform
treatment ([33], [34]). He defines the groups by an amalgamation process.
A different amalgamation procedure has also been proposed by Kac ([9],
[11]).

3.1. Definition of the groups

Let A E Mr(Z) be a Cartan matrix, (X, v, 0) a root datum for A and g
the corresponding Kac-Moody algebra. The group G we want to associ-
ate with g, more precisely with the root datum (X, v, 0394), may be
characterized by the following properties:

G is generated by subgroups T, Xi , Y , i =1, ... , r

where

(1) T is the torus X~z* = Homz(X*,*) with character group
X*, 

(2) Xi (resp. Yi) is the image of an additive one-parameter subgroup xi
(resp. y;): C - G normalized by T such that

for all tE T, cEC.
Furthermore, we require

(3) For any standard representation

with admissible highest weight io there is a homomorphism

such that for all i = 1, ... , r, cEe, t ~ T, v ~ V, we have
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and

if v EVIO
Note that the exponential series applied to v reduce to polynomials since
the action of e and fi is locally nilpotent on V03C9, cf. 2.2.

(4) For any admissible weight w which is non-zero on each connected
component of v, the kernel of the representation

is contained in T. (Here we say that a subset of v is connected if
the corresponding set of vertices in the Coxeter diagram is con-
nected).

The existence of such a group G follows from the work of Tits ([33],
[34]). One may deduce it also from the work of Marcuson ([21], see [30]).
When the Cartan matrix is of finite type we obtain a finite-dimensional
reductive group. There is also a more explicit description when the
Cartan matrix is affine, due to Garland, cf. [7].

3.2. Subgroups

Let N c G be the subgroup generated by T and the elements ni(c),
c~*, i = 1,..., r, where

Then N contains T as a normal subgroup, and N/T is isomorphic to the
Weyl group W introduced in 1.7, cf. [21], [33].

For the limited purpose of this paper we won’t use the Borel subgroup
B c G which together with N forms a Tits system in G. However, for
completeness, let us quickly give the definition.

Let b c g be the standard Cartan subalgebra (corresponding to T)
and 2 c X* ~h* the root system of b in g. For any real root 03B1~03A3R we
choose a w e W such that a = w(03B1i) for some 03B1i~ A. Let n E N be an
element which projects onto w E W and define

This is an additive one-parameter group normalized by T via the

character a.
Let U c G be the group generated by all Xa, a ~03A3+. Then U is

normalized by T and B := T  U.
Let J~{1,..., r ) be a subset and
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the corresponding submatrix of the Cartan matrix A. Denote {hi|i~ J},
resp {03B1i|i ~J}, by ~’, resp. A’. Then ( X, p’, A’) is a root datum for the
Cartan matrix A’. Let G’ be the group associated to the root datum

(X, p’, A’). Exploiting the defining properties of G’ and G one estab-
lishes a natural isomorphism from G’ onto the subgroup of G generated
by T and Xi, Y, i~ J. In particular, if A’ is of finite type the last group
is a finite-dimensional reductive subgroup of G.

4. Looijenga’s theory

In this chapter we will give a survey over Looijenga’s work [18]. We first
discuss his analysis of the Weyl group action on b, T and certain
subdomains EQ, f. In the real case such an analysis was also done by
Vinberg [35], both following the pattern of Bourbaki’s treatment [1].
Finally we describe the construction of the partial compactification of
J/W and its analytic structure.

Starting from section 4.3 we shall assume that the root datum given is
a simply connected one. We are interested only in this situation. The
results for arbitrary root data may be easily derived from this special case
(cf. [28] 4.5).

4.1. Uniformization of the torus

Let G be the group attached to a root datum (X, v, 0394). Many of the
constructions involving the torus T = X~z * can be formulated (some-
times easier) in terms of the Cartan algebras = Lie T = X~z. In the
following we shall consider T as the quotient of b by the lattice X, and
we fix the exponential map

obtained from the exact sequence

by tensoring with X.

4.2. The Tits cone

Let (X, v, 0394) be a root datum and W the corresponding Weyl group, cf.
1.7. Here we want to study the action of W on the real vector space
V = X ~zR. Let
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be the open, resp. closed (anti-) fundamental chamber. The Tits cone I is
the union of the W-translates of C

J = W. c.

Then we have

(1) 1 is a convex solid cone in V.
(2) C is a fundamental chamber for the action of W on I.
(3) Let v E I. Then the stabilizer Wv={w~W|w(v)=v} of v is

generated by the reflections Sa E W with 03B1 ~ 03A3R, 03B1(v) = 0.
(4) W acts properly discontinuously on the interior I of I, in particu-

lar for any 03BD ~ I there are only finitely many 03B1 ~ 03A3R vanishing on
v.

(5) 1 = I = V if and only if W is finite, i.e. if and only if the Cartan
matrix of (X, v, 0394) is of finite type.

REMARKS: Of course, similar results hold when we replace C by the
" true" fundamental chamber - C. We can also consider fundamental
chambers and Tits cones in the dual V*. Again, there are analogues
statements.

4.3. Looijenga’s domain

From now on our basic root datum (X, v, 0394) is assumed to be simply
connected. Let D ~ h = V ~R = X ~z denote the tube domain

Denote the semidirect product W  X of the Weyl group W with the
lattice X by W. Then we may extend the complex linear action of W on
EP c b to an action of W by letting X operate on C via translation in the
real direction

One can show that this action of W on 9 is again properly discontinu-
ous. Moreover, the stabilizers of points in -9 are generated by reflections
(here we need the simply connectedness). Thus the quotient space CI 17V
is a complex manifold.

Note that 3R= CIX is a domain in the torus T, and J/W = D/W.

4.4. Boundary components

Let (X, B7, b.) be a simply connected root datum as in 4.3. Let v’ be a
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subset of v, A’ the corresponding subset of A, and

the "orthogonal sets" of v’ and A’.
Let X( p’) = X/Z· p’, and denote the projection of B7"’* into X( B7’),

resp. the injection of 0394’* into X(v’)* by the same symbols, v’* and 0394’*.
Then (X, p’, A’), (X, v’*, 0394’*), and (X(~’), v’*, ~’*) are again simply
connected root data.
We say that v’ is a special subset of v if either v’ =àJ or all

connected components of v’ are of infinite, i.e. non-finite, type.
Let 1) v’ be the subspace of b generated by a special subset v’ of B7.

We shall call h~, as well as its W-translates special subspaces of 1) of
type ~’. Note h = {0}.

For any special subspace ’ ~ h let D(h’) denote the image of e in
the quotient 1)/f)’. In particular D({0}) = 9. Define

Then W acts naturally on this union, and we have

and

Here We, B c A, denotes the subgroup of W generated by the reflections
sa, a E 0.

Furthermore the quotient N(h ~’)/Z(h v’) is isomorphic to the ex-
tended Weyl group

of the root datum (X(v’), v’*, 0394’*) operating in the natural way on
h/h~’ = X(~’)~z and properly discontinuously on the subdomain
D(h~’)~h/h~’.
A topology on 9 is defined in the following way. Let x E D(h’),

h’~h special, be a point of D. Then a subset 4Y of D is called an open
neighborhood of x if

(1) x ~ u
(2) u~D is a convex open subset of !!2, invariant under the stabilizer

WxofxinW
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(3) If h" is special, h"~h’, then U~D(h") equals the projection of
U~D under the map h ~ l) Il) ".

With respect to this topology W acts by continuous transformations.
The orbit space  = / is locally compact, Hausdorff, and admits a
countable basis for its topology. In fact M is a complex Stein manifold
as we will see in the next section.

Note that since each boundary component D(h’) of  is stable under
the translation group X we obtain a toral analogue of :

4.5. Analytic functions on Ç)/W

Now we shall describe the analytic structure on the orbit space if = Ç)/W.
First we note that if is naturally stratified

where M( p’) is the smooth quotient of

or equivalently, the quotient of D(h~’) by N( 1) ~’)/Z(h ~’). A continu-
ous function on an open set d/I c M is said to be holomorphic if it
induces an analytic function on each stratum U~ M( v 1), B7’ c p spe-
cial.

With this analytic structure M turns out to be a Stein manifold. An
essential tool in the proof of this result are the following functions. Let
w E X* be a dominant weight (cf. 2.1). Define the value of the function
S03C9:  ~  at the point x ~ D(h’) by

Then this series converges uniformly and absolutely on compact subsets
of p)( 1)’) for any special h’~h and defines a -invariant continuous
function on . In other words, it defines a holomorphic function on
 = /.


