@article{CM_1982__47_3_249_0,
author = {Srinivas, V.},
title = {Vector bundles on the cone over a curve},
journal = {Compositio Mathematica},
pages = {249--269},
year = {1982},
publisher = {Martinus Nijhoff Publishers},
volume = {47},
number = {3},
mrnumber = {681609},
zbl = {0512.14010},
language = {en},
url = {https://www.numdam.org/item/CM_1982__47_3_249_0/}
}
Srinivas, V. Vector bundles on the cone over a curve. Compositio Mathematica, Tome 47 (1982) no. 3, pp. 249-269. https://www.numdam.org/item/CM_1982__47_3_249_0/
[1] : Some old and new problems in "Classical" Algebraic K-Theory. Lecture Notes in Mathematics 342, Springer-Verlag, Berlin/New York, 1973.
[2] : Algebraic K-Theory. Benjamin, 1968. | Zbl | MR
[3] : Vector bundles on cones over projective schemes. Invent. Math. 62 (1980) 15-22. | Zbl | MR
[4] and : Vector bundles on affine surfaces. Invent. Math. 36 (1976) 125-165. | Zbl | MR
[5] : Rational equivalence of zero cycles on algebraic surfaces. J. Math. Kyoto Univ. 9 (1968) 195-204. | Zbl | MR
[6] : Rational equivalence on singular varieties. Publ. Math. I.H.E.S. 45 (1975) 147-167. | Zbl | MR | Numdam
[7] : Algebraic geometry. Graduate texts in Math. 52, Springer-Verlag, Berlin/New York, 1978. | Zbl | MR
[8] : Fibratti vettoriali sulle superfici cubische. Archiv. Math. (Basel) 30 (1978) 143-145. | Zbl | MR
[9] : Higher algebraic K-theory I. In: Algebraic K-theory I. Lecture Notes in Math. 341, Springer-Verlag, Berlin/New York, 1972. | Zbl | MR
[10] and : K2 of discrete valuations. Advances in Math. 18 (1975) 182-238. | Zbl | MR
[11] : Higher algebraic K-theory II (after Daniel Quillen). Lecture Notes in Math. 551, Springer-Verlag, Berlin/New York, 1976. | Zbl | MR
[12] : Lectures on equations defining space curves. Tata Inst. Lecture Notes, Springer-Verlag, Berlin/New York, 1979. | Zbl | MR
[13] : Lectures on algebraic cycles. Duke Univ. Math. Ser. IV, Math. Dept., Duke Univ., Durham, N.C., U.S.A., 1980. | Zbl | MR
[14] : Le K2 des nombres duaux. C.R. Acad. Sci. Paris 273A (1971) 1204-1207. | Zbl | MR





