On any real semisimple Lie group we consider a one-parameter family of left-invariant naturally reductive metrics. Their geodesic flow in terms of Killing curves, the Levi Civita connection and the main curvature properties are explicitly computed. Furthermore we present a group theoretical revisitation of a classical realization of all simply connected 3-dimensional manifolds with a transitive group of isometries due to L. Bianchi and É. Cartan. As a consequence one obtains a characterization of all naturally reductive left-invariant riemannian metrics of .
@article{ASNSP_2006_5_5_2_171_0,
author = {Halverscheid, Stefan and Iannuzzi, Andrea},
title = {On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {171--187},
year = {2006},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 5},
number = {2},
mrnumber = {2244697},
zbl = {1150.53015},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2006_5_5_2_171_0/}
}
TY - JOUR
AU - Halverscheid, Stefan
AU - Iannuzzi, Andrea
TI - On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
SP - 171
EP - 187
VL - 5
IS - 2
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2006_5_5_2_171_0/
LA - en
ID - ASNSP_2006_5_5_2_171_0
ER -
%0 Journal Article
%A Halverscheid, Stefan
%A Iannuzzi, Andrea
%T On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2006
%P 171-187
%V 5
%N 2
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2006_5_5_2_171_0/
%G en
%F ASNSP_2006_5_5_2_171_0
Halverscheid, Stefan; Iannuzzi, Andrea. On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 2, pp. 171-187. https://www.numdam.org/item/ASNSP_2006_5_5_2_171_0/
[A] , “Iteration Theory of Holomorphic Mapping on Taut Manifolds”, Mediterranean Press, Commenda di Rende, Italy. | Zbl
[B] , Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Mem. Soc. It. delle Sc. (dei XL), (3) 11 (1898), 267-252 (also in Luigi Bianchi, Opere, Vol. IX, Edizioni Cremonese, Roma, 1958). | JFM
[BTV] , , , “Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces”, LNM 1598, Springer-Verlag, 1995. | Zbl | MR
[C] , “Leçons sur la Géométrie des Espaces de Riemann”, Gauthier-Villars, Paris, 1951. | Zbl | MR
[DZ] , , Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Amer. Math. Soc. 215 (1979). | Zbl | MR
[G] , Naturally reductive homogeneous Riemannian manifolds, Canad. J. Math. 37 (1985), 467-487. | Zbl | MR
[H] , “Differential Geometry, Lie Groups and Symmetric Spaces”, GSM 34, AMS, Providence, 2001. | Zbl | MR
[HI] , , A family of adapted complexifications for noncompact semisimple Lie groups, ArXiv: math.CV/0503377. | Zbl | Numdam
[KN] , , “Foundations of Differential Geometry”, Vol. II., Interscience, New York, 1969. | Zbl | MR
[M1] “Morse Theory”, Annals of Math. Studies 51, Princeton University Press, Princeton, N.J. 1963. | Zbl | MR
[M2] , Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293-329. | Zbl | MR
[O'N] , “Semi-Riemannian Geometry”, Academic Press, 1983. | Zbl | MR
[V] , “Leçons de Géométrie Différentielle”, Vol. I, Ed. Acad. Rp. Pop. Roumaine, 1957. | Zbl | MR
[W] , “Spaces of Constant Curvature”, New York: McGraw-Hill, 1967. | Zbl | MR





