Let be a non-compact, real semisimple Lie group. We consider maximal complexifications of which are adapted to a distinguished one-parameter family of naturally reductive, left-invariant metrics. In the case of their realization as equivariant Riemann domains over is carried out and their complex-geometric properties are investigated. One obtains new examples of non-univalent, non-Stein, maximal adapted complexifications.
Halverscheid, Stefan 1 ; Iannuzzi, Andrea 2
@article{ASNSP_2009_5_8_1_17_0,
author = {Halverscheid, Stefan and Iannuzzi, Andrea},
title = {A family of adapted complexifications for $SL_2(\mathbb{R})$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {17--49},
year = {2009},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 8},
number = {1},
mrnumber = {2512199},
zbl = {1180.53053},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2009_5_8_1_17_0/}
}
TY - JOUR
AU - Halverscheid, Stefan
AU - Iannuzzi, Andrea
TI - A family of adapted complexifications for $SL_2(\mathbb{R})$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2009
SP - 17
EP - 49
VL - 8
IS - 1
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2009_5_8_1_17_0/
LA - en
ID - ASNSP_2009_5_8_1_17_0
ER -
%0 Journal Article
%A Halverscheid, Stefan
%A Iannuzzi, Andrea
%T A family of adapted complexifications for $SL_2(\mathbb{R})$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 17-49
%V 8
%N 1
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2009_5_8_1_17_0/
%G en
%F ASNSP_2009_5_8_1_17_0
Halverscheid, Stefan; Iannuzzi, Andrea. A family of adapted complexifications for $SL_2(\mathbb{R})$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 1, pp. 17-49. https://www.numdam.org/item/ASNSP_2009_5_8_1_17_0/
[1] , Symplectic reduction and the homogeneous complex Monge-Ampère equation, Ann. Global Anal. Geom. 19 (2001), 327–353. | MR | Zbl
[2] and , On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990), 1–12. | MR | EuDML | Zbl
[3] , Complexification and hypercomplexification of manifolds with a linear connection, Internat. J. Math. 14 (2003), 813–824. | MR | Zbl
[4] , Pseudokähler forms on complex Lie groups, Doc. Math. 5 (2000), 595–611. | MR | EuDML | Zbl
[5] , On the uniqueness and characterization of Grauert tubes, In: “Complex Analysis and Geometry”, V. Ancona and A. Silva (eds.), Lecture Notes in Pure and Applied Math., Vol. 173, 1995, 119–133. | Zbl
[6] , and , The geometry of grauert tubes and complexification of symmetric spaces, Duke Math. J. 118 (2003), 465–491. | MR | Zbl
[7] , and , “Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces”, Lecture Notes Math., Vol. 1598, Springer-Verlag, Berlin 1995. | MR | Zbl
[8] and , “Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups”, Mem. Amer. Math. Soc., Vol. 215, 1979. | MR | Zbl
[9] , Pseudo-Kählerian structure on domains over a complex semisimple Lie group, Math. Ann. 232 (2002), 1–29. | MR | Zbl
[10] , and , “Cycle Spaces of Flag Domains: A Complex Geometric Viewpoint”, Progress in Mathematics, Vol. 245, Birkhäuser, Boston, 2005. | MR | Zbl
[11] and , On univalence of equivariant Riemann domains over the complexification of a non-compact, Riemannian symmetric space, Pacific J. Math. 238 (2008), 275–330. | MR | Zbl
[12] , Naturally reductive homogeneous Riemannian manifolds, Canad. J. Math. 37 (1985), 467–487. | MR | Zbl
[13] and , Grauert tubes and the homogeneous Monge-Ampère equation, J. Differential Geom. 34 (1991), 561–570 (first part); J. Differential Geom. 35 (1992), 627–641 (second part). | MR | Zbl
[14] and , Maximal complexifications of certain Riemannian homogeneous spaces, Trans. Amer. Math. Soc. 355 (2003), 4581–4594. | MR | Zbl
[15] and , On naturally reductive left-invariant metrics of . Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006), 171–187. | MR | EuDML | Zbl | Numdam
[16] , Geometric invariant theory on Stein spaces. Math. Ann. 289 (1991), 631–662. | MR | EuDML | Zbl
[17] and , Integration of local actions on holomorphic fiber spaces, Nagoya Math. J. 146 (1997), 31–53 | MR | Zbl
[18] , “Differential Geometry, Lie Groups and Symmetric Spaces”, Graduate Studies in Mathematics, Vol. 34, Amer. Math. Soc., Providence R.I., 2001. | Zbl
[19] and , Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundles of Riemannian manifolds, Math. Ann. 290 (1991), 689–712. | MR | EuDML | Zbl
[20] , “Semi-Riemannian Geometry”, Academic Press, New York, 1983. | MR
[21] and , Stein manifolds with compact symmetric center, Math. Ann. 289 (1991), 355–382. | MR | EuDML | Zbl
[22] , On envelopes of holomorphy, Commun. Pure Appl. Math. 16 (1963), 9–17. | MR | Zbl
[23] , The characterization of strictly parabolic manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), 87–154. | MR | EuDML | Zbl | Numdam
[24] , Complex structures on tangent bundles of Riemannian manifolds, Math. Ann. 291 (1991), 409–428. | MR | EuDML | Zbl
[25] , Adapted complex structures and Riemannian homogeneous spaces, In: “Complex Analysis and Applications” (Warsaw, 1997) Ann. Polon. Math. 70 (1998), 215–220. | MR | EuDML | Zbl
[26] , Canonical complex structures associated to connections, Math. Ann. 329 (2004), 553-591. | MR | Zbl
[27] , “Lie Groups, Lie Algebras, and their Representations”, Springer-Verlag, New York, 1984. | MR | Zbl
[28] , “Invariant Stein Domains: A Contribution to the Program of Gelfand and Gindikin”, PhD Thesis, Berichte aus der Mathematik, Shaker Verlag, Aachen 1996. | Zbl





