We investigate a weighted version of Hausdorff dimension introduced by V. Afraimovich, where the weights are determined by recurrence times. We do this for an ergodic invariant measure with positive entropy of a piecewise monotonic transformation on the interval , giving first a local result and proving then a formula for the dimension of the measure in terms of entropy and characteristic exponent. This is later used to give a relation between the dimension of a closed invariant subset and a pressure function.
Hofbauer, Franz 1
@article{ASNSP_2005_5_4_3_439_0,
author = {Hofbauer, Franz},
title = {The recurrence dimension for piecewise monotonic maps of the interval},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {439--449},
year = {2005},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 4},
number = {3},
mrnumber = {2185864},
zbl = {1170.37316},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2005_5_4_3_439_0/}
}
TY - JOUR AU - Hofbauer, Franz TI - The recurrence dimension for piecewise monotonic maps of the interval JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 439 EP - 449 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2005_5_4_3_439_0/ LA - en ID - ASNSP_2005_5_4_3_439_0 ER -
%0 Journal Article %A Hofbauer, Franz %T The recurrence dimension for piecewise monotonic maps of the interval %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 439-449 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2005_5_4_3_439_0/ %G en %F ASNSP_2005_5_4_3_439_0
Hofbauer, Franz. The recurrence dimension for piecewise monotonic maps of the interval. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 439-449. https://www.numdam.org/item/ASNSP_2005_5_4_3_439_0/
[1] , Pesins dimension for Poincaré recurrences, Chaos 7 (1997), 12-20. | Zbl | MR
[2] and , Dimension-like characteristics of invariant sets in dynamical systems, In: “Dynamics and randomness”, A. Maass, S. Martinez and J. San Martin (eds.), Kluwer Academic Publishers, Dordrecht, 2002, pp. 1-30. | Zbl | MR
[3] , and , Local dimensions for Poincaré recurrence, Electron. Res. Announc. Amer. Math. Soc. 6 (2000), 64-74. | Zbl | MR
[4] and , On pointwise dimensions and spectra of measures, C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), 719-723. | Zbl | MR
[5] , Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359-386. | Zbl | MR
[6] , An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map on the interval, In: “Lyapunov exponents”, Proceedings, Oberwolfach, 1990, Lecture Notes in Mathematics 1486, L. Arnold, H. Crauel and J.-P. Eckmann (eds.), Springer, Berlin, 1991, pp. 227-231. | Zbl | MR
[7] , Local dimension for piecewise monotonic maps on the interval, Ergod. Theory Dynam. Systems 15 (1995), 1119-1142. | Zbl | MR
[8] and , The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. J. Math. 35 (1992), 84-98. | Zbl | MR
[9] , and , Multifractal dimensions for invariant subsets of piecewise monotonic interval maps, Fund. Math. 176 (2003), 209-232. | Zbl | MR
[10] , Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (1989), 433-497. | Zbl | MR
[11] , Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), 183-200. | Zbl | MR
[12] and , “One-dimensional dynamics”, Springer-Verlag Berlin-Heidelberg-New York, 1993. | Zbl | MR
[13] , A multifractal formalism, Adv. Math. 116 (1995), 82-196. | Zbl | MR
[14] , “Dimension theory in dynamical systems: Contemporary views and applications”, The University of Chicago Press Chicago and London, 1997. | Zbl | MR
[15] , and , Recurrence, dimensions and Lyapunov exponents, J. Statist. Phys. 106 (2002), 623-634. | Zbl | MR
[16] , and , Recurrence and Lyapunov exponents, Moscow Math. J. 3 (2003), 189-203. | Zbl | MR
[17] , “An introduction to ergodic theory”, Springer-Verlag Berlin-Heidelberg-New York, 1982. | Zbl | MR





