Hardy-type inequalities related to degenerate elliptic differential operators
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 4 (2005) no. 3, p. 451-486
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators L p u:=- L * ( L u p-2 L u). If φ is a positive weight such that -L p φ0, then the Hardy-type inequalityholds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
Classification:  35H10,  22E30,  26D10,  46E35
@article{ASNSP_2005_5_4_3_451_0,
     author = {D'Ambrosio, Lorenzo},
     title = {Hardy-type inequalities related to degenerate elliptic differential operators},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 4},
     number = {3},
     year = {2005},
     pages = {451-486},
     zbl = {1170.35372},
     mrnumber = {2185865},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2005_5_4_3_451_0}
}
D’Ambrosio, Lorenzo. Hardy-type inequalities related to degenerate elliptic differential operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 4 (2005) no. 3, pp. 451-486. http://www.numdam.org/item/ASNSP_2005_5_4_3_451_0/

[1] Z. M. Balogh, I. Holopainen and J. T. Tyson, Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups, Math. Ann. 324 (2002), 159-186. | MR 1931762 | Zbl 1014.22009

[2] Z. M. Balogh and J. T. Tyson, Polar coordinates in Carnot groups, Math. Z. 241 (2002), 697-730. | MR 1942237 | Zbl 1015.22005

[3] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121-139. | MR 742415 | Zbl 0556.35063

[4] G. Barbatis, S. Filippas and A. Tertikas, Series expansion for L p Hardy inequalities, Indiana Univ. Math. J. 52 (2003), 171-190. | MR 1970026 | Zbl 1035.26014

[5] G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved L p Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004), 2169-2196. | MR 2048514 | Zbl 1129.26019

[6] T. Bieske and J. Gong, The P-Laplace Equation on a class of Grushin-type Spaces, Proc. Amer. Math. Soc., to appear. | MR 2240671 | Zbl 1107.35007

[7] A. Bonfiglioli and F. Uguzzoni, A Note on Lifting of Carnot groups, Rev. Mat. Iberoamericana. To appear. | MR 2232674 | Zbl 1100.35029

[8] A. Bonfiglioli and F. Uguzzoni, Nonlinear Liouville theorems for some critical problems on H-type groups, J. Funct. Anal. 207 (2004), 161-215. | MR 2027639 | Zbl 1045.35018

[9] H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 223-262. | MR 1638143 | Zbl 0907.35048

[10] H. Brezis and M. Marcus, Hardy's inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 217-237 (1998). Dedicated to Ennio De Giorgi. | Numdam | MR 1655516 | Zbl 1011.46027

[11] H. Brezis, M. Marcus and I. Shafrir, Extremal functions for Hardy's inequality with weight, J. Funct. Anal. 171 (2000), 177-191. | MR 1742864 | Zbl 0953.26006

[12] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), 443-469. | MR 1605678 | Zbl 0894.35038

[13] L. Capogna, Regularity for quasilinear equations and 1-quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), no. 2, 263-295. | MR 1679786 | Zbl 0927.35024

[14] L. Capogna, D. Danielli and N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), 1765-1794. | MR 1239930 | Zbl 0802.35024

[15] L. Capogna, D. Danielli and N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math. 118 (1996), 1153-1196. | MR 1420920 | Zbl 0878.35020

[16] G. Carron, Inégalités de Hardy sur les variétés riemanniennes non-compactes, J. Math. Pures Appl. (9) 76 (1997), 883-891. | MR 1489943 | Zbl 0886.58111

[17] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70. | MR 619983 | Zbl 0475.43010

[18] L. D'Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc. 132 (2004), 725-734. | MR 2019949 | Zbl 1049.35077

[19] L. D'Ambrosio, Some Hardy Inequalities on the Heisenberg Group, Differential Equations 40 (2004), 552-564. | MR 2153649 | Zbl 1073.22003

[20] L. D'Ambrosio and S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations 193 (2003), 511-541. | MR 1998967 | Zbl 1040.35012

[21] L. D'Ambrosio, E. Mitidieri and S. I. Pohozaev, Representation Formulae and Inequalities for Solutions od a Class of Second Order Partial Differential Equations, Trans. Amer. Math. Soc. (2005), PII S 0002-9947(05)03717-7. | MR 2177044 | Zbl 1081.35014

[22] D. Danielli, N. Garofalo and D.-M. Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), 263-341. | MR 2014879 | Zbl 1077.22007

[23] E. B. Davies, The Hardy constant, Q. J. Math. (2) 46 (1995), 417-431. | MR 1366614 | Zbl 0857.26005

[24] E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in L p (Ω), Math. Z. 227 (1998), 511-523. | MR 1612685 | Zbl 0903.58049

[25] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | MR 494315 | Zbl 0312.35026

[26] G. B. Folland and E. M. Stein, “ Hardy spaces on homogeneous groups”, volume 28 of Mathematical Notes, Princeton University Press, Princeton, N.J., 1982. | MR 657581 | Zbl 0508.42025

[27] L. Gallardo, Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents, In: “Probability measures on groups”, Oberwolfach, 1981, volume 928 of Lecture Notes in Math., Springer, Berlin, pp. 96-120. | MR 669065 | Zbl 0483.60072

[28] J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441-476. | MR 1616905 | Zbl 0918.35052

[29] N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble) 40 (1990), 313-356. | Numdam | MR 1070830 | Zbl 0694.22003

[30] N. Garofalo and D. Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), 411-448. | MR 1813232 | Zbl 1012.35014

[31] F. Gazzola, H.-C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), 2149-2168. | MR 2048513 | Zbl 1079.46021

[32] J. A. Goldstein and Q. S. Zhang, On a degenerate heat equation with a singular potential, J. Funct. Anal. 186 (2001), 342-359. | MR 1864826 | Zbl 1056.35093

[33] P. C. Greiner, A fundamental solution for a nonelliptic partial differential operator, Canad. J. Math. 31 (1979), 1107-1120. | MR 546962 | Zbl 0475.35003

[34] J. Heinonen, Calculus on Carnot groups, In: “Fall School in Analysis” (Jyväskylä, 1994), volume 68 of Report . Univ. Jyväskylä, Jyväskylä, pp. 1-31. | MR 1351042 | Zbl 0863.22009

[35] J. Heinonen and I. Holopainen, Quasiregular maps on Carnot groups, J. Geom. Anal. 7 (1997), 109-148. | MR 1630785 | Zbl 0905.30018

[36] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153. | MR 554324 | Zbl 0393.35015

[37] I. Kombe, Nonlinear degenerate parabolic equations for Baouendi-Grushin operators (2004), preprint. | MR 2226410

[38] G. Lu, J. Manfredi and B. Stroffolini, Convex functions on the Heisenberg group, Calc. Var. Partial Differential Equations 19 (2004), 1-22. | MR 2027845 | Zbl 1072.49019

[39] V. Magnani, Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex function (2003). URL http://cvgmt.sns.it/papers/mag03a, Preprint. | MR 2208954

[40] M. Marcus, V. J. Mizel and Y. Pinchover, On the best constant for Hardy’s inequality in 𝐑 n , Trans. Amer. Math. Soc. 350 (1998), 3237-3255. | MR 1458330 | Zbl 0917.26016

[41] T. Matskewich and P. E. Sobolevskii, The best possible constant in generalized Hardy’s inequality for convex domain in 𝐑 n , Nonlinear Anal. 28 (1997), 1601-1610. | MR 1431208 | Zbl 0876.46025

[42] T. Matskewich and P. E. Sobolevskii, The sharp constant in Hardy's inequality for complement of bounded domain, Nonlinear Anal. 33 (1998), 105-120. | MR 1621089 | Zbl 0930.26009

[43] V. G. Maz'Ja, “Sobolev spaces”, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin 1985. Translated from the Russian by T. O. Shaposhnikova. | MR 817985

[44] E. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), 563-572. | MR 1769903 | Zbl 0964.26010

[45] E. Mitidieri and S. I. Pohozaev, Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on 𝐑 𝐧 , J. Evol. Equ. 1 (2001), 189-220. | MR 1846746 | Zbl 0988.35095

[46] E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math. 234 (2001), 1-362. | MR 1879326 | Zbl 0987.35002

[47] P. Niu, H. Zhang and Y. Wang, Hardy-type and Rellich type inequalities on the Heisenberg group, Proc. Amer. Math. Soc. 129 (2001), 3623-3630. | MR 1860496 | Zbl 0979.35035

[48] S. Secchi, D. Smets and M. Willem, Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris 336 (2003), 811-815. | MR 1990020 | Zbl 1035.35020

[49] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), 103-153. | MR 1760280 | Zbl 0953.35053

[50] H. Zhang and P. Niu, Hardy-type inequalities and Pohozaev-type identities for a class of p-degenerate subelliptic operators and applications, Nonlinear Anal. 54 (2003), 165-186. | MR 1978971 | Zbl 1033.47033