We discuss differentiability properties of convex functions on Heisenberg groups. We show that the notions of horizontal convexity (h-convexity) and viscosity convexity (v-convexity) are equivalent and that h-convex functions are locally Lipschitz continuous. Finally we exhibit Weierstrass-type h-convex functions which are nowhere differentiable in the vertical direction on a dense set or on a Cantor set of vertical lines.
@article{ASNSP_2003_5_2_4_847_0,
author = {Balogh, Zolt\'an M. and Rickly, Matthieu},
title = {Regularity of convex functions on {Heisenberg} groups},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {847--868},
year = {2003},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 2},
number = {4},
mrnumber = {2040646},
zbl = {1121.43007},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2003_5_2_4_847_0/}
}
TY - JOUR AU - Balogh, Zoltán M. AU - Rickly, Matthieu TI - Regularity of convex functions on Heisenberg groups JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 847 EP - 868 VL - 2 IS - 4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2003_5_2_4_847_0/ LA - en ID - ASNSP_2003_5_2_4_847_0 ER -
%0 Journal Article %A Balogh, Zoltán M. %A Rickly, Matthieu %T Regularity of convex functions on Heisenberg groups %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 847-868 %V 2 %N 4 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2003_5_2_4_847_0/ %G en %F ASNSP_2003_5_2_4_847_0
Balogh, Zoltán M.; Rickly, Matthieu. Regularity of convex functions on Heisenberg groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 4, pp. 847-868. https://www.numdam.org/item/ASNSP_2003_5_2_4_847_0/
[1] - - , Convex viscosity solutions and state constraints, J. Math. Pures Appl. (76) 9 (1997), 265-288. | Zbl | MR
[2] - - , “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford Science Publications, Clarendon Press, Oxford, 2000. | Zbl | MR
[3] - , Weak differentiability of BV functions on stratified groups, Math. Z. (1) 245 (2003), 123-153. | Zbl | MR
[4] - - , Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric, Publ. Mat. 47 (2003), 237-259. | Zbl | MR
[5] , On -harmonic functions on the Heisenberg group, Comm. Partial Differential Equations 27 (2002), 727-762. | Zbl | MR
[6] - , Fully nonlinear elliptic equations, AMS colloquium publications 43, AMS, Providence, RI, 1995. | Zbl | MR
[7] - - , Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. (2) 282 (1984), 487-502. | Zbl | MR
[8] - - , User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (1) 27 (1992), 1-67. | Zbl | MR
[9] , Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70. | Zbl | MR
[10] - - , Notions of convexity in Carnot groups, Comm. Anal. Geom. (2) 11 (2003), 263-341. | Zbl | MR
[11] - - - , The theorem of Busemann-Feller-Alexandrov in Carnot groups, preprint. | Zbl | MR
[12] - , “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, 1992. | Zbl | MR
[13] , “Fractal Geometry: Mathematical Foundations and Applications”, John Wiley & Sons, 1990. | Zbl | MR
[14] - , Maximum and comparison principles for convex functions on the Heisenberg group, preprint. | Zbl | MR
[15] - , On the second order derivatives of convex functions on the Heisenberg group, preprint. | MR | Numdam
[16] - - , Superharmonicity of nonlinear ground states, Rev. Math. Iberoam. 16 (2000), 17-27. | Zbl | MR
[17] - - , Convex functions on the Heisenberg group, to appear in Calc. Var. Partial Differential Equations. | Zbl | MR
[18] , Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions, preprint. | Zbl | MR
[19] , “Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability”, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1995. | Zbl | MR
[20] - , A version of the Hopf-Lax formula in the Heisenberg group, Comm. Partial Differential Equations 27 (2002), 1139-1159. | Zbl | MR
[21] , Métriques de Carnot-Carathéodory et quasiisométries des espaces symmétriques de rang un, Ann. Math. 129 (1989), 1-60. | Zbl | MR






