Twistor forms are a natural generalization of conformal vector fields on riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non-parallel twistor forms in any even degree.
@article{ASNSP_2003_5_2_4_823_0, author = {Moroianu, Andrei and Semmelmann, Uwe}, title = {Twistor forms on {K\"ahler} manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {823--845}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {4}, year = {2003}, mrnumber = {2040645}, zbl = {1121.53050}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2003_5_2_4_823_0/} }
TY - JOUR AU - Moroianu, Andrei AU - Semmelmann, Uwe TI - Twistor forms on Kähler manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 823 EP - 845 VL - 2 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2003_5_2_4_823_0/ LA - en ID - ASNSP_2003_5_2_4_823_0 ER -
%0 Journal Article %A Moroianu, Andrei %A Semmelmann, Uwe %T Twistor forms on Kähler manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 823-845 %V 2 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2003_5_2_4_823_0/ %G en %F ASNSP_2003_5_2_4_823_0
Moroianu, Andrei; Semmelmann, Uwe. Twistor forms on Kähler manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 4, pp. 823-845. http://www.numdam.org/item/ASNSP_2003_5_2_4_823_0/
[1] Self-duality in four dimensional Riemannian geometry, Proc. R. Soc. Lond. A362 (1978), 425-461. | MR | Zbl
- - ,[2] V. Apostolov, private communication.
[3] The geometry of weakly selfdual Kähler surfaces, Compositio Math. 135 (2003), 279-322. | MR | Zbl
- - ,[4] Hamiltonian 2-forms in Kähler geometry I, math.DG/0202280 (2002). | Zbl
- - ,[5] Real Killing spinors and holonomy , Comm. Math. Phys. 154 (1993), 509-521. | MR | Zbl
,[6] Friedrich - R. Grunewald - I. Kath, “Twistor and Killing Spinors on Riemannian Manifolds”, Teubner-Verlag, Stuttgart-Leipzig, 1991. | MR | Zbl
.[7] Debye potentials for Maxwell and Dirac fields from a generalization of the Killing-Yano equation, J. Math. Phys. 38 (1997), 4504-4527. | MR | Zbl
- - ,[8] Dirac symmetry operators from conformal Killing-Yano tensors, Classical Quantum Gravity 14 (1997), 1037-1042. | MR | Zbl
- ,[9] “Einstein manifolds”, Springer-Verlag, New York 1987. | MR | Zbl
,[10] Stein-Weiss operators and ellipticity, J. Functional Anal. 151 (1997), 334-383. | MR | Zbl
,[11] Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), 259-284. | MR | Zbl
- ,[12] On the conformal Killing -form in compact Kaehlerian manifolds, Tensor (N.S.) 42 (1985), 258-271. | MR | Zbl
- - ,[13] On conformal Killing tensor, Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67-74. | MR | Zbl
,[14] On quadratic first integrals of the geodesic equations for type spacetimes, Comm. Math. Phys. 18 (1970) 265-274. | MR | Zbl
- ,[15] Conformal Killing forms on Riemannian manifolds, Math. Z. 243 (2003), 503-527. | MR | Zbl
,[16] On Killing tensors in Riemannian manifolds of positive curvature operator, Tohoku Math. J. (2) 28 (1976), 177-184. | MR | Zbl
,[17] On the integrability of Killing-Yano's equation, J. Math. Soc. Japan 21 (1969), 259-265. | MR | Zbl
- ,[18] On conformal Killing tensor in a Riemannian space, Tohoku Math. J. (2) 21 (1969), 56-64. | MR | Zbl
,[19] On a Killing -form in a compact Kählerian manifold, Tensor (N.S.) 29 (1975), 274-276. | MR | Zbl
,[20] Some remarks on tensor fields and curvature, Ann. of Math. (2) 55 (1952), 328-347. | MR | Zbl
,