We study solutions of the Gross-Pitaevsky equation and similar equations in space dimensions in a certain scaling limit, with initial data for which the jacobian concentrates around an (oriented) rectifiable dimensional set, say , of finite measure. It is widely conjectured that under these conditions, the jacobian at later times continues to concentrate around some codimension submanifold, say , and that the family of submanifolds evolves by binormal mean curvature flow. We prove this conjecture when is a round -dimensional sphere with multiplicity . We also prove a number of partial results for more general inital data.
@article{ASNSP_2002_5_1_4_733_0,
author = {Jerrard, Robert L.},
title = {Vortex filament dynamics for {Gross-Pitaevsky} type equations},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {733--768},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {4},
mrnumber = {1991001},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2002_5_1_4_733_0/}
}
TY - JOUR AU - Jerrard, Robert L. TI - Vortex filament dynamics for Gross-Pitaevsky type equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 733 EP - 768 VL - 1 IS - 4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2002_5_1_4_733_0/ LA - en ID - ASNSP_2002_5_1_4_733_0 ER -
%0 Journal Article %A Jerrard, Robert L. %T Vortex filament dynamics for Gross-Pitaevsky type equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 733-768 %V 1 %N 4 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2002_5_1_4_733_0/ %G en %F ASNSP_2002_5_1_4_733_0
Jerrard, Robert L. Vortex filament dynamics for Gross-Pitaevsky type equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 733-768. https://www.numdam.org/item/ASNSP_2002_5_1_4_733_0/
[1] G. Alberti - S. Baldo - G. Orlandi, in preparation.
[2] , Optimal isoperimetric inequalities, Indiana Univ. Math. J. 35 (1986), no. 3, 451-547. | Zbl | MR
[3] - , A measure theoretic approach to higher codimension mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 25 (1997), 27-48. | Zbl | MR | Numdam
[4] - , Travelling waves for the Gross-Pitaevsky equation i, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), no. 2, 147-238. | Zbl | MR | Numdam
[5] J. E. Colliander -d R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, IMRN 1998 (1998), 333-358. | Zbl | MR
[6] J. E. Colliander -d R. L. Jerrard, Ginzburg-Landau vortices: weak stability and Schrödinger equation dynamics, Journal d'Analyse Mathematique 77 (1999), 129-205. | Zbl | MR
[7] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Physica D 77 (1994), 383-404. | Zbl | MR
[8] , Vortices in an Imperfect Bose Gas. I. the Condensate, Physical Review 138 (1965), no. 2A, A429-A437. | Zbl | MR
[9] - - , “Cartesian currents in the calculus of variations. I. Cartesian currents”, Springer-Verlag, 1998. | Zbl | MR
[10] - , Functions of bounded higher variation, to appear, Calc. Var. | MR
[11] - , The Jacobian and the Ginzburg-Landau energy, to appear, Indiana Univ. Math. Jour. | MR
[12] - , Rectifiability of the distributional Jacobian for a class of functions, C.R. Acad. Sci. Paris, Série I 329 (1999), 683-688. | Zbl | MR
[13] - , Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), no. 4, 423-466. | Zbl | MR | Numdam
[14] , Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension 2 submanifolds, Comm. Pure Appl. Math. 51 (1998), no. 4, 385-441. | Zbl | MR
[15] - , On the incompressible fluid limit and the vortex law of motion of the nonlinear Schrödinger equation, Comm. Math. Phys. 200 (1999), 249-274. | Zbl | MR
[16] , On the stability of the radial solution to the Ginzburg-Landau equation, Comm. Partial Differential Equations 22 (1997), no. 3-4, 619-632. | Zbl | MR
[17] , Rigorous and generalized derivation of vortex line dynamics in superfluids and superconductors, SIAM J. Appl. Math. 60 (2000), no. 3, 1099-1110. | Zbl | MR
[18] , Defect dynamics for the nonlinear Schrödinger equation derived from a variational principle, Physics Letters A 159 (1991), 245-251. | MR
[19] - , Motion of vortex lines in the Ginzburg-Landau model, Physica D 47 (1991), 353-360. | Zbl | MR
[20] , Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), no. 2, 379-403. | Zbl | MR
[21] , “Lectures on geometric measure theory”, Australian National University, 1984. | Zbl | MR






