@article{AIHPC_1999__16_4_423_0,
author = {Jerrard, Robert L. and Soner, Halil Mete},
title = {Scaling limits and regularity results for a class of {Ginzburg-Landau} systems},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {423--466},
year = {1999},
publisher = {Gauthier-Villars},
volume = {16},
number = {4},
mrnumber = {1697561},
zbl = {0944.35006},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1999__16_4_423_0/}
}
TY - JOUR AU - Jerrard, Robert L. AU - Soner, Halil Mete TI - Scaling limits and regularity results for a class of Ginzburg-Landau systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1999 SP - 423 EP - 466 VL - 16 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1999__16_4_423_0/ LA - en ID - AIHPC_1999__16_4_423_0 ER -
%0 Journal Article %A Jerrard, Robert L. %A Soner, Halil Mete %T Scaling limits and regularity results for a class of Ginzburg-Landau systems %J Annales de l'I.H.P. Analyse non linéaire %D 1999 %P 423-466 %V 16 %N 4 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1999__16_4_423_0/ %G en %F AIHPC_1999__16_4_423_0
Jerrard, Robert L.; Soner, Halil Mete. Scaling limits and regularity results for a class of Ginzburg-Landau systems. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) no. 4, pp. 423-466. https://www.numdam.org/item/AIHPC_1999__16_4_423_0/
[1] and , Level set approach to mean curvature flow in arbitrary codimension. J. Diff. Geom., Vol. 43, 1996, pp. 693-737. | Zbl | MR
[2] , , and , Front propagation and phase field theory. SIAM J. Cont. Opt., Vol. 31 (2), 1993, pp. 439-469. | Zbl | MR
[3] , , , and , Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems. European J. Appl. Math., Vol. 6(2), 1995, pp. 115-126. | Zbl | MR
[4] , , and F HÉLEIN, Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var., Vol. 1, 1993, pp. 123-148. | Zbl | MR
[5] , , ,Ginzburg-Landau Vortices, Birkhäuser, Boston, 1994. | Zbl | MR
[6] , , and , Quantization effects for -Δu = u(1 - |u|2) in R2. Archive Rat. Mech. Anal., Vol. 126, 1994, pp. 35-58. | Zbl | MR
[7] , Generation and propagation of the interface for reaction-diffusion equations. Jour. Diff. Equations, Vol. 96, 1992, pp. 116-141. | Zbl | MR
[8] and , Existence and partial regularity results for the heat flow for harmonic maps. Math Z., Vol. 201, 1989, pp. 83-103. | Zbl | MR | EuDML
[9] of vortices in Ginzburg-Landau theories with applications to superconductivity. Physica D, Vol. 77, 1994, pp. 383-404. | Zbl | MR
[10] , , and , Phase transitions and generalized motion by curvature. Comm. Pure Appl. Math., Vol. 65, 1992, pp. 1097-1123. | Zbl | MR
[11] , Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Diff. Geom., Vol. 38 (2), 1993, pp. 417-461. | Zbl | MR
[12] , Fully nonlinear phase field equations and generalized mean curvature motion. Comm PDE, Vol. 20, 1995, pp. 233-265. | Zbl | MR
[13] , Lower bounds for generalized Ginzburg-Landau functionals, center for Nonlinear Analysis Research Report No. 95-NA-020, 1995.
[14] and , Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. Anal., Vol. 142, 1998, pp. 99-125. | Zbl | MR
[15] and , A certain property of solutions of parabolic equations with measurable coefficients. Math. USSR Izvestia, Vol. 16 (1), 1981, pp. 151-164. | Zbl
[16] , , and . Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.
[17] , Solutions of Ginzburg-Landau equations and critical points of the renormalized energy. Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 12 (5), 1995, pp. 599-622. | Zbl | MR | Numdam
[18] , Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math., Vol. 49 (4), 1996, pp. 323-359. | Zbl | MR
[19] , Vortices in complex scalar fields. Physica D, Vol. 43, 1990, pp. 385-406. | Zbl | MR
[20] and , Motion of vortex lines in the Ginzburg-Landau model. Physica D, Vol. 47, 1991, pp. 353-360. | Zbl | MR
[21] , Self-induced motion of line vortices. Quart. Appl. Math., Vol. 49 (1), 1991, pp. 1-9. | Zbl | MR
[22] , Analytic aspects of the harmonic map problem, In S.S. Chern, editor, Seminar on Nonlinear Partial Differential Equations. Springer, Berlin, 1984. | Zbl | MR
[23] , Motion of a set by the curvature of its boundary. Jour. Diff. Equations, Vol. 101 (2), 1993, pp. 313-372. | Zbl | MR
[24] , On the evolution of harmonic maps in higher dimensions. J. Diff. Geom., Vol. 28, 1988, pp. 485-502. | Zbl | MR
[25] . Variational Methods, Springer-Verlag, Berlin, 1990. | Zbl | MR
[26] , On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions. Diff. and Int. Equations, Vol. 7 (6), 1994, pp. 1613-1624. | Zbl | MR
[27] , Chemical Waves, Oscillations, and Turbulence, Springer-Verlag, Berlin, 1984. | Zbl






