We prove that the Cauchy problem for a class of hyperbolic equations with non-Lipschitz coefficients is well-posed in and in Gevrey spaces. Some counter examples are given showing the sharpness of these results.
@article{ASNSP_2002_5_1_2_327_0,
author = {Colombini, Ferruccio and del Santo, Daniele and Kinoshita, Tamotu},
title = {Well-posedness of the {Cauchy} problem for a hyperbolic equation with {non-Lipschitz} coefficients},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {327--358},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {2},
mrnumber = {1991143},
zbl = {1098.35094},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2002_5_1_2_327_0/}
}
TY - JOUR AU - Colombini, Ferruccio AU - del Santo, Daniele AU - Kinoshita, Tamotu TI - Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 327 EP - 358 VL - 1 IS - 2 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2002_5_1_2_327_0/ LA - en ID - ASNSP_2002_5_1_2_327_0 ER -
%0 Journal Article %A Colombini, Ferruccio %A del Santo, Daniele %A Kinoshita, Tamotu %T Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 327-358 %V 1 %N 2 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2002_5_1_2_327_0/ %G en %F ASNSP_2002_5_1_2_327_0
Colombini, Ferruccio; del Santo, Daniele; Kinoshita, Tamotu. Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 327-358. https://www.numdam.org/item/ASNSP_2002_5_1_2_327_0/
[1] - - , Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temp, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6 (1979), 511-559. | Zbl | MR | Numdam
[2] - - , On the Cauchy problem for hyperbolic operators with non-regular coefficients, to appear in Proceedings of the Conference “À la mémoire de Jean Leray” Karlskrona 2000, M. de Gosson - J. Vaillant (eds.), Kluwer, New York. | Zbl | MR
[3] - , Hyperbolic operators with non-Lipschitz coefficients, Duke Math. J. 77 (1995), 657-698. | Zbl | MR
[4] - , Some examples of hyperbolic equations without local solvability, Ann. Sci. École Norm. Sup. (4) 22 (1989), 109-125. | Zbl | MR | Numdam
[5] , “Linear Partial Differential Operators”, Springer-Verlag, Berlin, 1963. | Zbl
[6] , Regularly hyperbolic systems and Gevrey classes, Ann. Mat. Pura Appl. 140 (1985), 133-145. | Zbl | MR
[7] , Sur les équations hyperboliques à coefficients höldériens en et de classe de Gevrey en , Bull. Sci. Math. 107 (1983), 113-138. | Zbl | MR






