@article{ASNSP_1996_4_23_1_179_0,
author = {Horowitz, C. and Korenblum, B. and Pinchuk, B.},
title = {Extremal functions and contractive divisors in $A^{-n}$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {179--191},
year = {1996},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 23},
number = {1},
mrnumber = {1401422},
zbl = {0866.30039},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1996_4_23_1_179_0/}
}
TY - JOUR
AU - Horowitz, C.
AU - Korenblum, B.
AU - Pinchuk, B.
TI - Extremal functions and contractive divisors in $A^{-n}$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
SP - 179
EP - 191
VL - 23
IS - 1
PB - Scuola normale superiore
UR - https://www.numdam.org/item/ASNSP_1996_4_23_1_179_0/
LA - en
ID - ASNSP_1996_4_23_1_179_0
ER -
%0 Journal Article
%A Horowitz, C.
%A Korenblum, B.
%A Pinchuk, B.
%T Extremal functions and contractive divisors in $A^{-n}$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1996
%P 179-191
%V 23
%N 1
%I Scuola normale superiore
%U https://www.numdam.org/item/ASNSP_1996_4_23_1_179_0/
%G en
%F ASNSP_1996_4_23_1_179_0
Horowitz, C.; Korenblum, B.; Pinchuk, B. Extremal functions and contractive divisors in $A^{-n}$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 23 (1996) no. 1, pp. 179-191. https://www.numdam.org/item/ASNSP_1996_4_23_1_179_0/
[1] , The Schwarz Function and Its Applications, Carus Math. Monographs, vol. 27, Math. Assoc. of America. | Zbl | MR
[2] - - - , Contractive zero divisors in Bergman spaces, Pacific J. Math 157 (1993), 37-56. | Zbl | MR
[3] , A factorization theorem for square area-integrable analytic functions, J. Reine Angew. Math. 422 (1991), 45-68. | Zbl | MR
[4] , Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1973. | Zbl | MR
[5] , Beurling type density theorems in the unit disck, Invent. Math. 113 (1993), 21-39. | Zbl | MR
[6] , The Schwarz function and its generalization to higher dimensions, Univ. of Arkansas Lecture Notes in Math. Sciences, vol. 9, John Wiley and Sons, New York, 1992. | Zbl | MR





