@article{ASENS_1992_4_25_1_77_0,
author = {Yang, Deane},
title = {Convergence of riemannian manifolds with integral bounds on curvature. {I}},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {77--105},
year = {1992},
publisher = {Elsevier},
volume = {Ser. 4, 25},
number = {1},
doi = {10.24033/asens.1644},
mrnumber = {93a:53037},
zbl = {0748.53025},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.1644/}
}
TY - JOUR AU - Yang, Deane TI - Convergence of riemannian manifolds with integral bounds on curvature. I JO - Annales scientifiques de l'École Normale Supérieure PY - 1992 SP - 77 EP - 105 VL - 25 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.24033/asens.1644/ DO - 10.24033/asens.1644 LA - en ID - ASENS_1992_4_25_1_77_0 ER -
%0 Journal Article %A Yang, Deane %T Convergence of riemannian manifolds with integral bounds on curvature. I %J Annales scientifiques de l'École Normale Supérieure %D 1992 %P 77-105 %V 25 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.24033/asens.1644/ %R 10.24033/asens.1644 %G en %F ASENS_1992_4_25_1_77_0
Yang, Deane. Convergence of riemannian manifolds with integral bounds on curvature. I. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 25 (1992) no. 1, pp. 77-105. doi: 10.24033/asens.1644
[1] , Ricci Curvature Bounds and Einstein Metrics on Compact Manifolds (J. Am. Math. Soc., 1989, pp. 455-490). | Zbl | MR
[2] , Convergence and Rigidity of Manifolds Under Ricci Curvature Bounds (Invent. Math., Vol. 102, 1990, pp. 429-445). | Zbl | MR
[3] and , Diffeomorphism Finiteness for Manifolds with Ricci Curvature and Ln/2-Norm of Curvature Bounded, preprint, 1990.
[4] , and , Smoothing Riemannian Metrics (Math. Zeitschr., Vol. 188, 1984, pp. 69-74). | Zbl | MR
[5] and , Gromov's Almost Flat Manifolds (Astérisque, Vol. 81, 1981). | Zbl | MR | Numdam
[6] , Eigenvalues in Riemannian Geometry, Academic Press, 1984. | Zbl | MR
[7] , and , Finite Propagation Speed, Kernel Estimates for Functions of the Laplace Operator and the Geometry of Complete Riemannian Manifolds (J. Diff. Geometry, Vol. 17, 1982, p. 15-53). | Zbl | MR
[8] , Finiteness Theorems for Riemannian Manifolds (Am. J. Math., Vol. 92, 1970, pp. 61-74). | Zbl | MR
[9] , Some Isoperimetric Inequalities and Eigenvalue Estimates (Ann. scient. Éc. Norm. Sup., Vol. 13, 1980, pp. 419-435). | Zbl | MR | Numdam
[10] , Deforming Metrics in the Direction of Their Ricci Tensors (J. Diff. Geometry, Vol. 18, 1983, pp. 157-162). | Zbl | MR
[11] , Isoperimetric Inequalities Based on Integral Norms of Ricci Curvature (Astérisque, Vol. 157-158, 1988, pp. 191-216). | Zbl | MR | Numdam
[12] , Convergence of Riemannian Manifolds, Ricci Pinching, and Ln/2-Curvature Pinching, (J. Diff. Geometry, Vol. 32, 1990, pp. 349-382). | Zbl
[13] , Einstein Manifolds (J. Diff. Geometry, Vol. 32, 1990, pp. 155-183). | Zbl
[14] , Ln/2-Curvature Pinching (J. Diff. Geometry, Vol. 32, 1990, pp. 713-774). | Zbl
[15] and , Lipschitz Convergence of Riemannian Manifolds, (Pac. J. Math., Vol. 131, 1988, pp. 119-141). | Zbl | MR
[16] , and , Structures métriques pour les variétés riemanniennes, Cedic, 1981. | Zbl | MR
[17] , Three-Manifolds with Positive Ricci Curvature, (J. Diff. Geometry, Vol. 17, 1982, pp. 255-306). | Zbl | MR
[18] , Global Existence for Nonlinear Wave Equations (Commun. Pure Appl. Math., Vol. 43, 1980, pp. 43-101). | Zbl | MR
[19] , Convergence of Riemannian Manifolds (Compositio Mathematica, Vol. 62, 1987, pp. 3-16). | Zbl | MR | Numdam
[20] , Deforming the Metric on Complete Riemannian Manifolds, preprint, 1987.
[21] , Pseudodifferential Operators, Princeton University Press, 1981. | Zbl | MR
[22] , Convergence of Riemannian Manifolds with Integral Bounds on Curvature. II [Ann. scient. Éc. Norm. Sup. (to appear)]. | Zbl | Numdam
[23] , Lp Pinching and Compactness Theorems for Compact Riemannian Manifolds, preprint.
[24] , Riemannian Manifolds with Small Integral Norm of Curvature, preprint, 1989.
[25] , Existence and Regularity of Energy-Minimizing Riemannian Metrics [Internat. Math. Research Notices (Duke Math. J.), 1991]. | Zbl | MR
Cité par Sources :





