@article{ASENS_1992_4_25_1_77_0, author = {Yang, Deane}, title = {Convergence of riemannian manifolds with integral bounds on curvature. {I}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {77--105}, publisher = {Elsevier}, volume = {Ser. 4, 25}, number = {1}, year = {1992}, doi = {10.24033/asens.1644}, mrnumber = {93a:53037}, zbl = {0748.53025}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1644/} }
TY - JOUR AU - Yang, Deane TI - Convergence of riemannian manifolds with integral bounds on curvature. I JO - Annales scientifiques de l'École Normale Supérieure PY - 1992 SP - 77 EP - 105 VL - 25 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1644/ DO - 10.24033/asens.1644 LA - en ID - ASENS_1992_4_25_1_77_0 ER -
%0 Journal Article %A Yang, Deane %T Convergence of riemannian manifolds with integral bounds on curvature. I %J Annales scientifiques de l'École Normale Supérieure %D 1992 %P 77-105 %V 25 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.24033/asens.1644/ %R 10.24033/asens.1644 %G en %F ASENS_1992_4_25_1_77_0
Yang, Deane. Convergence of riemannian manifolds with integral bounds on curvature. I. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 25 (1992) no. 1, pp. 77-105. doi : 10.24033/asens.1644. http://www.numdam.org/articles/10.24033/asens.1644/
[1] Ricci Curvature Bounds and Einstein Metrics on Compact Manifolds (J. Am. Math. Soc., 1989, pp. 455-490). | MR | Zbl
,[2] Convergence and Rigidity of Manifolds Under Ricci Curvature Bounds (Invent. Math., Vol. 102, 1990, pp. 429-445). | MR | Zbl
,[3] Diffeomorphism Finiteness for Manifolds with Ricci Curvature and Ln/2-Norm of Curvature Bounded, preprint, 1990.
and ,[4] Smoothing Riemannian Metrics (Math. Zeitschr., Vol. 188, 1984, pp. 69-74). | MR | Zbl
, and ,[5] Gromov's Almost Flat Manifolds (Astérisque, Vol. 81, 1981). | Numdam | MR | Zbl
and ,[6] Eigenvalues in Riemannian Geometry, Academic Press, 1984. | MR | Zbl
,[7] Finite Propagation Speed, Kernel Estimates for Functions of the Laplace Operator and the Geometry of Complete Riemannian Manifolds (J. Diff. Geometry, Vol. 17, 1982, p. 15-53). | MR | Zbl
, and ,[8] Finiteness Theorems for Riemannian Manifolds (Am. J. Math., Vol. 92, 1970, pp. 61-74). | MR | Zbl
,[9] Some Isoperimetric Inequalities and Eigenvalue Estimates (Ann. scient. Éc. Norm. Sup., Vol. 13, 1980, pp. 419-435). | Numdam | MR | Zbl
,[10] Deforming Metrics in the Direction of Their Ricci Tensors (J. Diff. Geometry, Vol. 18, 1983, pp. 157-162). | MR | Zbl
,[11] Isoperimetric Inequalities Based on Integral Norms of Ricci Curvature (Astérisque, Vol. 157-158, 1988, pp. 191-216). | Numdam | MR | Zbl
,[12] Convergence of Riemannian Manifolds, Ricci Pinching, and Ln/2-Curvature Pinching, (J. Diff. Geometry, Vol. 32, 1990, pp. 349-382). | Zbl
,[13] Einstein Manifolds (J. Diff. Geometry, Vol. 32, 1990, pp. 155-183). | Zbl
,[14] Ln/2-Curvature Pinching (J. Diff. Geometry, Vol. 32, 1990, pp. 713-774). | Zbl
,[15] Lipschitz Convergence of Riemannian Manifolds, (Pac. J. Math., Vol. 131, 1988, pp. 119-141). | MR | Zbl
and ,[16] Structures métriques pour les variétés riemanniennes, Cedic, 1981. | MR | Zbl
, and ,[17] Three-Manifolds with Positive Ricci Curvature, (J. Diff. Geometry, Vol. 17, 1982, pp. 255-306). | MR | Zbl
,[18] Global Existence for Nonlinear Wave Equations (Commun. Pure Appl. Math., Vol. 43, 1980, pp. 43-101). | MR | Zbl
,[19] Convergence of Riemannian Manifolds (Compositio Mathematica, Vol. 62, 1987, pp. 3-16). | Numdam | MR | Zbl
,[20] Deforming the Metric on Complete Riemannian Manifolds, preprint, 1987.
,[21] Pseudodifferential Operators, Princeton University Press, 1981. | MR | Zbl
,[22] Convergence of Riemannian Manifolds with Integral Bounds on Curvature. II [Ann. scient. Éc. Norm. Sup. (to appear)]. | Numdam | Zbl
,[23] Lp Pinching and Compactness Theorems for Compact Riemannian Manifolds, preprint.
,[24] Riemannian Manifolds with Small Integral Norm of Curvature, preprint, 1989.
,[25] Existence and Regularity of Energy-Minimizing Riemannian Metrics [Internat. Math. Research Notices (Duke Math. J.), 1991]. | MR | Zbl
,Cited by Sources: