@article{AIHPC_2006__23_2_237_0,
author = {Alama, Stan and Bronsard, Lia and Montero, J. Alberto},
title = {On the {Ginzburg-Landau} model of a superconducting ball in a uniform field},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {237--267},
year = {2006},
publisher = {Elsevier},
volume = {23},
number = {2},
doi = {10.1016/j.anihpc.2005.03.004},
zbl = {05024486},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.03.004/}
}
TY - JOUR AU - Alama, Stan AU - Bronsard, Lia AU - Montero, J. Alberto TI - On the Ginzburg-Landau model of a superconducting ball in a uniform field JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 237 EP - 267 VL - 23 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2005.03.004/ DO - 10.1016/j.anihpc.2005.03.004 LA - en ID - AIHPC_2006__23_2_237_0 ER -
%0 Journal Article %A Alama, Stan %A Bronsard, Lia %A Montero, J. Alberto %T On the Ginzburg-Landau model of a superconducting ball in a uniform field %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 237-267 %V 23 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2005.03.004/ %R 10.1016/j.anihpc.2005.03.004 %G en %F AIHPC_2006__23_2_237_0
Alama, Stan; Bronsard, Lia; Montero, J. Alberto. On the Ginzburg-Landau model of a superconducting ball in a uniform field. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 2, pp. 237-267. doi: 10.1016/j.anihpc.2005.03.004
[1] , , Properties of a single vortex solution in a rotation Bose-Einstein condensate, C. R. Acad. Sci. Paris, Ser. I 336 (2003) 713-718. | Zbl | MR
[2] G. Alberti, S. Baldo, G. Orlandi, Variational convergence for functionals of the Ginzburg-Landau type, Preprint, 2003. | MR
[3] , , , Ginzburg-Landau Vortices, Birkhäuser, Basel, 1994. | Zbl | MR
[4] , , , Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Func. Anal. 186 (2001) 432-520. | Zbl | MR
[5] , , , , Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 243-303. | Zbl | MR | Numdam
[6] D. Chiron, Boundary problems for the Ginzburg-Landau equation, Preprint, Commun. Cont. Math., in press. | Zbl | MR
[7] , Geometric Measure Theory, Springer-Verlag, New York, 1969. | Zbl | MR
[8] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Revised third printing, Springer-Verlag, 1998. | Zbl
[9] , , The breakdown of superconductivity due to strong fields in the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359. | Zbl | MR
[10] , Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984. | Zbl | MR
[11] , , , Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. (4) CLXXVII (1999) 37-115. | Zbl | MR
[12] R.L. Jerrard, More about Bose Einstein condensates, Preprint, 2003.
[13] , , , Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions, Comm. Math. Phys. 249 (3) (2004) 549-577. | Zbl | MR
[14] , , The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2) (2002) 151-191. | Zbl | MR
[15] , , Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Ser. A 111 (1989) 69-84. | Zbl | MR
[16] , The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, 1969. | Zbl | MR
[17] , , Complex Ginzburg-Landau equations in higher dimensions and codimension two area minimizing currents, J. Eur. Math. Soc. 1 (1999) 237-322. | Zbl | MR
[18] , Superfluids, Wiley, New York, 1950. | Zbl
[19] , , , Local minimizers with vortices to the Ginzburg-Landau system in three dimensions, CPAM LVII (2004) 0099-0125. | Zbl
[20] , Line vortices in the -Higgs model, ESAIM Control Optim. Calc. Var. 1 (1996) 77-167. | Zbl | MR | Numdam
[21] , Ginzburg-Landau minimizers from to and minimal connections, Indiana Univ. Math. J. 50 (4) (2001) 1807-1844. | Zbl | MR
[22] , , A product estimate for Ginzburg-Landau and corollaries, J. Funct. Anal. 211 (1) (2004) 219-244. | Zbl | MR
[23] , , Ginzburg-Landau minimizers near the first critical field have bounded vorticity, Calc. Var. Partial Differential Equations 17 (1) (2003) 17-28. | Zbl | MR
[24] , Local minimizers for the Ginzburg-Landau energy near critical magnetic field I, Comm. Cont. Math. 1 (3) (1999) 295-333. | Zbl | MR
[25] , Superconductivity, Gordon and Breach, 1965.
[26] , The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940) 411-444. | MR | JFM
[27] , Weakly Differentiable Functions, Springer-Verlag, 1989. | Zbl | MR
Cité par Sources :






