On the Ginzburg-Landau model of a superconducting ball in a uniform field
Annales de l'I.H.P. Analyse non linéaire, Volume 23 (2006) no. 2, pp. 237-267.
@article{AIHPC_2006__23_2_237_0,
     author = {Alama, Stan and Bronsard, Lia and Montero, J. Alberto},
     title = {On the {Ginzburg-Landau} model of a superconducting ball in a uniform field},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {237--267},
     publisher = {Elsevier},
     volume = {23},
     number = {2},
     year = {2006},
     doi = {10.1016/j.anihpc.2005.03.004},
     zbl = {05024486},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.03.004/}
}
TY  - JOUR
AU  - Alama, Stan
AU  - Bronsard, Lia
AU  - Montero, J. Alberto
TI  - On the Ginzburg-Landau model of a superconducting ball in a uniform field
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2006
SP  - 237
EP  - 267
VL  - 23
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2005.03.004/
DO  - 10.1016/j.anihpc.2005.03.004
LA  - en
ID  - AIHPC_2006__23_2_237_0
ER  - 
%0 Journal Article
%A Alama, Stan
%A Bronsard, Lia
%A Montero, J. Alberto
%T On the Ginzburg-Landau model of a superconducting ball in a uniform field
%J Annales de l'I.H.P. Analyse non linéaire
%D 2006
%P 237-267
%V 23
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2005.03.004/
%R 10.1016/j.anihpc.2005.03.004
%G en
%F AIHPC_2006__23_2_237_0
Alama, Stan; Bronsard, Lia; Montero, J. Alberto. On the Ginzburg-Landau model of a superconducting ball in a uniform field. Annales de l'I.H.P. Analyse non linéaire, Volume 23 (2006) no. 2, pp. 237-267. doi : 10.1016/j.anihpc.2005.03.004. http://www.numdam.org/articles/10.1016/j.anihpc.2005.03.004/

[1] Aftalion A., Jerrard R., Properties of a single vortex solution in a rotation Bose-Einstein condensate, C. R. Acad. Sci. Paris, Ser. I 336 (2003) 713-718. | MR | Zbl

[2] G. Alberti, S. Baldo, G. Orlandi, Variational convergence for functionals of the Ginzburg-Landau type, Preprint, 2003. | MR

[3] Bethuel F., Brezis H., Hélein F., Ginzburg-Landau Vortices, Birkhäuser, Basel, 1994. | MR | Zbl

[4] Bethuel F., Brezis H., Orlandi G., Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Func. Anal. 186 (2001) 432-520. | MR | Zbl

[5] Bethuel F., Rivière T., Bethuel F., Rivière T., Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 243-303. | Numdam | MR | Zbl

[6] D. Chiron, Boundary problems for the Ginzburg-Landau equation, Preprint, Commun. Cont. Math., in press. | MR | Zbl

[7] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. | MR | Zbl

[8] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Revised third printing, Springer-Verlag, 1998. | Zbl

[9] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields in the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359. | MR | Zbl

[10] Giusti E., Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984. | MR | Zbl

[11] Iwaniec T., Scott C., Stroffolini B., Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. (4) CLXXVII (1999) 37-115. | MR | Zbl

[12] R.L. Jerrard, More about Bose Einstein condensates, Preprint, 2003.

[13] Jerrard R., Montero A., Sternberg P., Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions, Comm. Math. Phys. 249 (3) (2004) 549-577. | MR | Zbl

[14] Jerrard R., Soner H.M., The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2) (2002) 151-191. | MR | Zbl

[15] Kohn R.V., Sternberg P., Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Ser. A 111 (1989) 69-84. | MR | Zbl

[16] Ladyzhenskaya O., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, 1969. | MR | Zbl

[17] Lin F.H., Rivière T., Complex Ginzburg-Landau equations in higher dimensions and codimension two area minimizing currents, J. Eur. Math. Soc. 1 (1999) 237-322. | MR | Zbl

[18] London F., Superfluids, Wiley, New York, 1950. | Zbl

[19] Montero A., Sternberg P., Ziemer W., Local minimizers with vortices to the Ginzburg-Landau system in three dimensions, CPAM LVII (2004) 0099-0125. | Zbl

[20] Rivière T., Line vortices in the U1-Higgs model, ESAIM Control Optim. Calc. Var. 1 (1996) 77-167. | Numdam | MR | Zbl

[21] Sandier E., Ginzburg-Landau minimizers from R n+1 to R n and minimal connections, Indiana Univ. Math. J. 50 (4) (2001) 1807-1844. | MR | Zbl

[22] Sandier E., Serfaty S., A product estimate for Ginzburg-Landau and corollaries, J. Funct. Anal. 211 (1) (2004) 219-244. | MR | Zbl

[23] Sandier E., Serfaty S., Ginzburg-Landau minimizers near the first critical field have bounded vorticity, Calc. Var. Partial Differential Equations 17 (1) (2003) 17-28. | MR | Zbl

[24] Serfaty S., Local minimizers for the Ginzburg-Landau energy near critical magnetic field I, Comm. Cont. Math. 1 (3) (1999) 295-333. | MR | Zbl

[25] Tinkham M., Superconductivity, Gordon and Breach, 1965.

[26] Weyl H., The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940) 411-444. | JFM | MR

[27] Ziemer W.P., Weakly Differentiable Functions, Springer-Verlag, 1989. | MR | Zbl

Cited by Sources: