@article{AIHPC_1986__3_6_431_0,
author = {Mawhin, J. and Willem, M.},
title = {Critical points of convex perturbations of some indefinite quadratic forms and semi-linear boundary value problems at resonance},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {431--453},
year = {1986},
publisher = {Gauthier-Villars},
volume = {3},
number = {6},
mrnumber = {870864},
zbl = {0678.35091},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1986__3_6_431_0/}
}
TY - JOUR AU - Mawhin, J. AU - Willem, M. TI - Critical points of convex perturbations of some indefinite quadratic forms and semi-linear boundary value problems at resonance JO - Annales de l'I.H.P. Analyse non linéaire PY - 1986 SP - 431 EP - 453 VL - 3 IS - 6 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1986__3_6_431_0/ LA - en ID - AIHPC_1986__3_6_431_0 ER -
%0 Journal Article %A Mawhin, J. %A Willem, M. %T Critical points of convex perturbations of some indefinite quadratic forms and semi-linear boundary value problems at resonance %J Annales de l'I.H.P. Analyse non linéaire %D 1986 %P 431-453 %V 3 %N 6 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1986__3_6_431_0/ %G en %F AIHPC_1986__3_6_431_0
Mawhin, J.; Willem, M. Critical points of convex perturbations of some indefinite quadratic forms and semi-linear boundary value problems at resonance. Annales de l'I.H.P. Analyse non linéaire, Tome 3 (1986) no. 6, pp. 431-453. https://www.numdam.org/item/AIHPC_1986__3_6_431_0/
[1] and , Critical point theory and a theorem of Amaral and Pera, Boll. Un. Mat. Ital., to appear. | Zbl
[2] , and , Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J., t. 25, 1976, p. 933-944. | Zbl | MR
[3] and , Periodic solutions of a nonlinear wave equation, Proc. Royal Soc. Edinburgh, t. A85, 1980, p. 313-320. | Zbl | MR
[4] and , Periodic solutions of a nonlinear telegraph equation in one dimension, Boll. Un. Nat. Ital., t. 5, 18-B, 1981, p. 709-720. | Zbl | MR
[5] , Solutions périodiques des systèmes hamiltoniens, in Séminaire Bourbaki, 1982-1983, Astérique, p. 105-106, Soc. Math. France, Paris, 1983, p. 105-128. | Zbl | MR | Numdam
[6] and , On the solvability of semilinear gradient operator equations, Adv. in Math., t. 25, 1977, p. 97-132. | Zbl | MR
[7] and , Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961.
[8] , Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., (NS), t. 8, 1983, p. 409-426. | Zbl | MR
[9] and , Hamiltonian trajectories with prescribed minimal period, Comm. Pure Appl. Math., t. 33, 1980, p. 103-116. | Zbl | MR
[10] and , Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., t. 28, 1975, p. 567-597. | Zbl | MR
[11] , Nonlinear boundary value problems with simple eigenvalue of the linear part, Arch. Rat. Mech. Analysis, t. 37, 1970, p. 381-398. | Zbl | MR
[12] , Remarks on the preceding paper of Ahmad and Lazer on periodic solutions, Boll. Un. Mat. Ital., t. 6, 3-A, 1984, p. 229-238. | Zbl | MR
[13] , A Neumann boundary value problem with jumping monotone nonlinearity, Delft Progress Report, t. 10, 1985, p. 44-52. | Zbl | MR
[14] , The dual least action principle and nonlinear differential equations, in Intern. Conf. Qualitative Theory of Differential Equations, Edmonton, 1984, to appear.
[15] , Points fixes, points critiques et problèmes aux limites, Sém. Math. Supé- rieures, Press. Univ. Montreal, 1985. | Zbl | MR
[16] and , Critical Point Theory and Hamiltonian Systems, in preparation.
[17] , and , Variational methods and semilinear elliptic equations, Arch. Rat. Mech. Anal., in press. | Zbl
[18] , and , Necessary and sufficient conditions for the solvability of a nonlinear two-point boundary value problem, Proc. Amer. Math. Soc., t. 93, 1985, p. 667-674. | Zbl | MR
[19] , Some minimax theorems and applications to nonlinear partial differential equations, in Nonlinear Analysis, Cesari, Kannan and Weinberger ed., Academic Press, 1978, p. 161-177. | Zbl | MR






