@incollection{SB_1982-1983__25__105_0,
author = {Berestycki, Henri},
title = {Solutions p\'eriodiques de syst\`emes hamiltoniens},
booktitle = {S\'eminaire Bourbaki : volume 1982/83, expos\'es 597-614},
series = {Ast\'erisque},
note = {talk:603},
pages = {105--128},
year = {1983},
publisher = {Soci\'et\'e math\'ematique de France},
number = {105-106},
mrnumber = {728984},
zbl = {0526.58016},
language = {fr},
url = {https://www.numdam.org/item/SB_1982-1983__25__105_0/}
}
TY - CHAP AU - Berestycki, Henri TI - Solutions périodiques de systèmes hamiltoniens BT - Séminaire Bourbaki : volume 1982/83, exposés 597-614 AU - Collectif T3 - Astérisque N1 - talk:603 PY - 1983 SP - 105 EP - 128 IS - 105-106 PB - Société mathématique de France UR - https://www.numdam.org/item/SB_1982-1983__25__105_0/ LA - fr ID - SB_1982-1983__25__105_0 ER -
%0 Book Section %A Berestycki, Henri %T Solutions périodiques de systèmes hamiltoniens %B Séminaire Bourbaki : volume 1982/83, exposés 597-614 %A Collectif %S Astérisque %Z talk:603 %D 1983 %P 105-128 %N 105-106 %I Société mathématique de France %U https://www.numdam.org/item/SB_1982-1983__25__105_0/ %G fr %F SB_1982-1983__25__105_0
Berestycki, Henri. Solutions périodiques de systèmes hamiltoniens, dans Séminaire Bourbaki : volume 1982/83, exposés 597-614, Astérisque, no. 105-106 (1983), Exposé no. 603, 24 p.. https://www.numdam.org/item/SB_1982-1983__25__105_0/
[1] , - Foundations of Mechanics, 2nd edition, Benjamin, New York (1967). | Zbl
[2] , - Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Annali Scuola Norm. Sup. Pisa Serie IV, 7(1980), 539-603. | Zbl | MR | Numdam
[3] , - Periodic solutions of asymptotically linear hamiltonian systems, Manuscripta Math. 32(1980), 149-189. | Zbl | MR
[4] , - On a theorem by Ekeland and Lasry concerning the number of periodic hamiltonian trajectories, J. Diff. Equ. 43(1981), 1-6. | Zbl
[5] , - Solutions of minimal period for a class of convex hamiltonian systems, Preprint. | MR
[6] , - Dual variational methods in critical point theory and applications, J. Funct. Anal. 14(1973), 349-381. | Zbl | MR
[7] - Méthodes mathématiques de la mécanique classique, Editions Mir, Moscou (1976). | Zbl | MR
[8] , - Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris (1967). | Zbl | MR
[9] - Variational principles for differential equations of elliptic, parabolic and hyperbolic type, Cahiers CEREMADE n° 7912, Univ. Paris-Dauphine. | Zbl
[10] , - Second order evolution equations associated with convex hamiltonians, Bull. Canad. Math. (1979). | Zbl | MR
[11] , - Variational solutions of some nonlinear free boundary problems, Arch. Ration. Mech. Anal. 43(1971), 255-271. | Zbl | MR
[12] - Groupes d'homotopie des ensembles de niveaux pour certaines fonctionnelles à gradient Fredholm, à paraître.
[13] , - Forced vibrations of superquadratic hamiltonian systems, Acta Math. (1983), sous presse. | Zbl | MR
[14] , - Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Applied Math. (1983), sous presse. | Zbl | MR
[15] - Some critical point theorems and applications, Comm. Pure Applied Math. 33(1980), 147-172. | Zbl | MR
[16] - On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274(1982), 533-572. | Zbl | MR
[17] - A geometrical index for the group S1 and some applications to the research of periodic solutions of O.D.E. 's, Comm. Pure Appl. Math. 34(1981), 393-432. | Zbl | MR
[18] , - Critical point theorems for indefinite functionals, Invent. Math. 52(1979), 241-273. | Zbl | MR
[19] - Orbites périodiques de systèmes conservatifs, Sém. Goulaouic-Meyer-Schwartz, Exposé n° XXIV, 1981-82, Ec. Polytechnique, Palaiseau. | Zbl | MR | Numdam
[20] , - On a free boundary problem arising in plasma physics, Nonlinear Analysis, T.M.A. 4(1980), 415-436. | Zbl | MR
[21] , - A topological method for the existence of periodic orbits to conservative systems, Preprint.
[22] , , , - Existence of multiple periodic orbits on star-shaped hamiltonian surfaces, Preprint. | MR
[23] - Nonlinearity and functional analysis, Academic Press, New York (1987). | Zbl | MR
[24] - On a family of periodic solutions for hamiltonian systems, J. Diff. Equ. 10(1971), 324-335. | Zbl | MR
[25] - Periodic solutions of nonlinear vibrating strings and duality principle, Bull. A.M.S., à paraître. | Zbl
[26] , - Periodic solutions of nonlinear wave equations and hamiltonian systems, Amer. J. of Math. 103(1980), 559-570. | Zbl | MR
[27] , , - Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33(1980), 667-684. | Zbl | MR
[28] , - Un principe variationnel associé à certaines équations paraboliques, C.R.A.S. 282(1976), 971-974 et 1197-1198. | Zbl
[29] - Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math. 34(1981), 639-712. | Zbl | MR
[30] - A classical variational principle for periodic hamiltonian trajectories, Proc. Amer. Math. Soc. 76(1979), 186-188. | Zbl | MR
[31] - Periodic solutions to hamiltonian inclusions, J. Diff. Equ. 40(1981), 1-6. | Zbl | MR
[32] , - Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33(1980), 103-116. | Zbl | MR
[33] - Isolated invariant sets and the Morse index, CBMS Reg. Conf. ser. in Math. n° 38, Amer. Math. Soc. Providence R.I. (1978). | Zbl | MR
[34] , - Morse type index theory for flows and periodic solutions for hamiltonian equations, à paraître. | Zbl
[35] , - The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold, Version préliminaire.
[36] - Orbites périodiques des systèmes hamiltoniens autonomes, Sém. Bourbaki février 1980, exposé n° 552, Lect. Notes in Math. n° 842, Springer-Verlag (1981). | Zbl | MR | Numdam
[37] - Periodic solutions of hamiltonian equations and a theorem of P. Rabinowitz, J. Diff. Equ. 34(1979), 523-534. | Zbl | MR
[38] - Oscillations de systèmes hamiltoniens non linéaires III, Bull. Soc. Math. France 109(1981), 297-330. | Zbl | MR | Numdam
[38B] - Forced oscillations of nonlinear hamiltonian systems II, Advances Math. 7A(1981), 345-360. | Zbl | MR
[39] - A perturbation theory near convex hamiltonian systems, Cahiers CEREMADE n° 8226, Univ. Paris-Dauphine, à paraître. | Zbl
[40] - La théorie des perturbations au voisinage des systèmes hamiltoniens convexes, Sém. Goulaouic-Meyer-Schwartz décembre 1981, Exposé n° 7, Ec. Polytechnique, Palaiseau. | Zbl | Numdam
[41] , - On the number of periodic trajectories for a hamiltonian flow on a convex energy surface, Ann. Math. 112(1980), 283-319. | Zbl | MR
[42] , - Problèmes variationnels non convexes en dualité, C.R.A.S. Paris, Série A 291(1980), 493-496. | Zbl | MR
[43] , - Convex analysis and variational problems, North Holland, New York (1976). | Zbl | MR
[44] , - Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for hamiltonian systems, Invent. Math. 45(1978), 139-174. | Zbl | MR
[45] , , - Borsuk-Ulam theorem for arbitrary S1-actions and applications, MRC Report 2301, Madison Wis. USA.
[45B] , - Some results on solutions of minimal period to superquadratic hamiltonian systems, Preprint. | MR
[46] - A theorem on the existence of periodic solutions to hamiltonian systems with convex potentials, J. Diff. Equ. 10(1971), 324-335. | Zbl | MR
[47] - A simple proof for a result of I. Ekeland and J.M. Lasry concerning the number of periodic hamiltonian trajectories on a prescribed energy surface, Preprint.
[47B] - The equivariant J-homomorphism for arbitrary S1-action, Preprint.
[48] , - Méthodes topologiques dans les problèmes variationnals, Hermann, Paris (1934). | Zbl
[49] - Problème général de la stabilité des mouvements, Ann. Fac. Sci. Toulouse 2(1907), 203-474.
[50] , - Problèmes aux limites non homogènes et applications, Dunod, Paris (1968). | Zbl
[51] , - Metodi perturbativi nella teoria di Morse, Boll. U.M.I. 11(1975), 1-32. | Zbl | MR
[52] - Contractive mappings and periodically perturbed conservative systems, Arch. Math. 12(1976), 67-74. | Zbl | MR
[53] - Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math. 29(1976), 727-747. | Zbl | MR
[54] - Some minimax principles and their applications in nonlinear elliptic equations, J. Analyses Math. 37(1980), 248-275. | Zbl | MR
[55] - Comments on nonlinear problems, Proceed. Conf. Catania (Italie), septembre 1981. | MR
[56] - Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc. 4(1981), 267-302. | Zbl | MR
[57] - Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (1982). | JFM
[58] - Critical point theory and the minimax principle, Proc. Symp. Pure Math. vol. 15, Amer. Math. Soc. Providence R.I. (1970), 185-212. | Zbl | MR
[59] - Variational methods for nonlinear eigenvalue problems, (CIME, Varenna 1974), Ediz. Cremonese, Rome (1974). | MR
[60] - Free vibrations for a semi-linear wave equation, Comm. Pure Appl. Math. 31(1978), 31-68. | Zbl | MR
[61] - Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math. 31(1978), 157-184. | Zbl | MR
[62] - A variational method for finding periodic solutions of differential equations, Nonlinear evolution equations (M.G. Crandall Ed.) Academic Press, New York (1978), 225-251. | Zbl | MR
[63] - Periodic solutions of hamiltonian systems : A survey, MRC Techn. Report n° 2154, Univ. Wisconsin-Madison (1980).
[64] - Subharmonic solutions of hamiltonian systems, Comm. Pure Math. 33(1980), 609-633. | Zbl | MR
[65] - Periodic solutions of large norm of hamiltonian systems, Preprint. | MR
[66] - Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272(1982), 753-769. | Zbl | MR
[67] - Periodischer bewegungen mechanischer systeme, Math. Zeit. 51(1948), 197-216. | Zbl | MR
[68] , - Lectures on celestial mechanics, Springer-Verlag, New York (1971) ; Grundlehren Math. vol. 187. | Zbl | MR
[69] - A class of nonlinear differential equations of second order in time, Nonlinear Analysis, T.M.A. 2(1978), 355-373. | Zbl | MR
[70] - Lagragian submanifolds and hamiltonian systems, Ann. Math. 98 (1973), 377-410. | Zbl | MR
[71] - Normal modes for nonlinear hamiltonian systems, Invent. Math. 20 (1973), 47-57. | Zbl | MR
[72] - Periodic orbits for convex hamiltonian systems, Ann. Math. 108 (1987), 507-518. | Zbl | MR
[73] - Bifurcations and Hamilton's principle, Math. Zeit. 159(1978), 235-248. | Zbl | MR
[74] - On the hypotheses of Rabinowitz' periodic orbit theorems, J. Diff. Equ. 33(1979), 353-358. | Zbl | MR
[75] - Subharmonic oscillations of convex hamiltonian systems, Preprint. | MR
[76] - Subharmonic oscillations of nonlinear systems, Proceed. Conf. "Equa. diff. 82", Würzburg, à paraître. | Zbl







