@article{AIHPB_1998__34_2_209_0,
author = {Kaimanovich, Vadim A. and Fisher, Albert},
title = {A {Poisson} formula for harmonic projections},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {209--216},
year = {1998},
publisher = {Gauthier-Villars},
volume = {34},
number = {2},
mrnumber = {1614591},
zbl = {0903.60064},
language = {en},
url = {https://www.numdam.org/item/AIHPB_1998__34_2_209_0/}
}
TY - JOUR AU - Kaimanovich, Vadim A. AU - Fisher, Albert TI - A Poisson formula for harmonic projections JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1998 SP - 209 EP - 216 VL - 34 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_1998__34_2_209_0/ LA - en ID - AIHPB_1998__34_2_209_0 ER -
Kaimanovich, Vadim A.; Fisher, Albert. A Poisson formula for harmonic projections. Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 2, pp. 209-216. https://www.numdam.org/item/AIHPB_1998__34_2_209_0/
[1] , Théorie du potentiel sur les graphes et les variétés, Springer Lecture Notes in Math., Vol. 1427, 1990, pp. 4-112. | Zbl | MR
[2] , and , An amenable equivalence relation is generated by a single transformation, Ergod. Th. & Dynam. Sys., Vol. 1, 1981, pp. 431-450. | Zbl | MR
[3] , Convex-invariant means and a pathwise central limit theorem, Adv. Math. Vol. 63, 1987, pp. 213-246. | Zbl | MR
[4] , Harris operators, Israel J. Math., Vol. 33, 1979, pp. 281-309. | Zbl | MR
[5] , Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, Proceedings of the Conference on Harmonic Analysis and Discrete Potential Theory (Frascati, 1991) (M. A. Picardello, ed.), Plenum, New York, 1992, pp. 145-180 | MR
[6] , Boundaries of invariant Markov operators : the identification problem, London Math. Soc. Lecture Note Series Vol. 228, 1996, pp. 127-176 | Zbl | MR
[7] and , Function theory, random paths and covering spaces, J. Diff. Geom., Vol. 19, 1984, pp. 299-323 | Zbl | MR
[8] , Limites médiales d'après Mokobodzki, Springer Lecture Notes Math., Vol. 321, 1973, pp. 198-204 | Zbl | MR | Numdam | EuDML
[9] , Markov Chains, 2nd revised ed., North-Holland, Amsterdam, 1984. | Zbl | MR






